Publications by authors named "Kristin Odlo"

Cellular behaviors are governed by combinations of systemic and microenvironmental factors; together, these regulate cell signaling responses to growth factors. This contextual microenvironmental influence also determines drug sensitivity. Hence using in vitro systems that model contextual cellular behavior is highly beneficial for effective therapeutic development.

View Article and Find Full Text PDF

Cancer cells are more sensitive to oxidative stress due to higher levels of reactive oxygen species. Therefore, the ability of anti-cancer agent combretastatin A-4 (CA-4) and triazole analogues to induce reactive oxygen species may be important for selectivity against cancer cells. The purpose of the present study was to investigate the structural requirements for reactive oxygen species production by CA-4 and the triazole analogues Ana-2, Ana-3 and Ana-4.

View Article and Find Full Text PDF

The synthesis, cytotoxicity, inhibition of tubulin polymerization data and anti-angiogenetic effects of seven 1,5-disubstituted 1,2,3-triazole analogs and two 1,4-disubstituted 1,2,3-triazole analogs of combretastatin A-1 (1) are reported herein. The biological studies revealed that the 1,5-disubstituted 1,2,3-triazoles 3-methoxy-6-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)benzene-1,2-diol (6), 3-methoxy-6-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)benzene-1,2-diamine (8) and 5-(2,3-difluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole (9) were the three most active compounds regarding inhibition of both tubulin polymerization and angiogenesis. Molecular modeling studies revealed that combretastatins 1 and 2 and analogs 5-11 could be successfully docked into the colchicine binding site of α,β-tubulin.

View Article and Find Full Text PDF

A series of cis-restricted 1,4- and 1,5-disubstituted 1,2,3-triazole analogs of combretastatin A-4 (1) have been prepared. Cytotoxicity and tubulin inhibition studies showed that 2-methoxy-5-((5-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-1-yl)methyl)aniline (5e) and 2-methoxy-5-(1-(3,4,5-trimethoxybenzyl)-1H-1,2,3-triazol-5-yl)aniline (6e) were two of the most active compounds. Molecular modeling studies revealed that the N-2 and N-3 atoms in the triazole rings in 5e and 6e did not form hydrogen bonds with the amino acids in the anticipated pharmacophore.

View Article and Find Full Text PDF

A series of cis-restricted 1,5-disubstituted 1,2,3-triazole analogues of combretastatin A-4 (1) have been prepared. The triazole 12f, 2-methoxy-5-(1-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazol-5-yl)aniline, displayed potent cytotoxic activity against several cancer cell lines with IC(50) values in the nanomolar range. The ability of triazoles to inhibit tubulin polymerization has been evaluated, and 12f inhibited tubulin polymerization with IC(50)=4.

View Article and Find Full Text PDF