Opsonization of nanocarriers is one of the most important biological barriers for controlled drug delivery. The typical way to prevent such unspecific protein adsorption and thus fast clearance by the immune system is the covalent modification of drug delivery vehicles with poly(ethylene glycol) (PEG), so-called PEGylation. Recently, polyphosphoesters (PPEs) were identified as adequate PEG substitutes, however with the benefits of controllable hydrophilicity, additional chemical functionality, or biodegradability.
View Article and Find Full Text PDFDendritic cells (DCs) are part of the immune system and can internalize pathogens by carbohydrate receptors. The uptake induces maturation and migration of the DCs resulting in an adaptive immune response by presenting antigens to T-cells. Thus, targeted delivery to DCs is a powerful tool for immunotherapy.
View Article and Find Full Text PDFDeveloping new functional biomaterials requires the ability to simultaneously repel unwanted and guide wanted protein adsorption. Here, we systematically interrogate the factors determining the protein adsorption by comparing the behaviors of different polymeric surfaces, poly(ethylene glycol) and a poly(phosphoester), and five different natural proteins. Interestingly we observe that, at densities comparable to those used in nanocarrier functionalization, the same proteins are either adsorbed (fibrinogen, human serum albumin, and transferrin) or repelled (immunoglobulin G and lysozyme) by both polymers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Synthetic polymers are commonly used as protein repelling materials for a variety of biomedical applications. Despite their widespread use, the fundamental mechanism underlying protein repellence is often elusive. Such insights are essential for improving existing and developing new materials.
View Article and Find Full Text PDF