Publications by authors named "Kristin Missal"

A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components.

View Article and Find Full Text PDF
Article Synopsis
  • - The study reports on experiments analyzing a targeted 1% of the human genome during the ENCODE Project's pilot phase, providing crucial insights into human genome function.
  • - Findings reveal that the human genome is largely transcribed, with evidence showing that most genomic bases contribute to various types of transcripts, including those that do not code for proteins.
  • - Enhanced understanding of transcription regulation, chromatin structure, and evolutionary insights from comparisons between species help define the functional landscape of the human genome, guiding future research in genome characterization.
View Article and Find Full Text PDF
RNAs everywhere: genome-wide annotation of structured RNAs.

J Exp Zool B Mol Dev Evol

January 2007

Starting with the discovery of microRNAs and the advent of genome-wide transcriptomics, non-protein-coding transcripts have moved from a fringe topic to a central field research in molecular biology. In this contribution we review the state of the art of "computational RNomics", i.e.

View Article and Find Full Text PDF

Background: MicroRNAs have been identified as crucial regulators in both animals and plants. Here we report on a comprehensive comparative study of all known miRNA families in animals. We expand the MicroRNA Registry 6.

View Article and Find Full Text PDF

We present a survey for non-coding RNAs and other structured RNA motifs in the genomes of Caenorhabditis elegans and Caenorhabditis briggsae using the RNAz program. This approach explicitly evaluates comparative sequence information to detect stabilizing selection acting on RNA secondary structure. We detect 3,672 structured RNA motifs, of which only 678 are known non-translated RNAs (ncRNAs) or clear homologs of known C.

View Article and Find Full Text PDF

Motivation: The topology and function of gene regulation networks are commonly inferred from time series of gene expression levels in cell populations. This strategy is usually invalid if the gene expression in different cells of the population is not synchronous. A promising, though technically more demanding alternative is therefore to measure the gene expression levels in single cells individually.

View Article and Find Full Text PDF

Motivation: The analysis of animal genomes showed that only a minute part of their DNA codes for proteins. Recent experimental results agree, however, that a large fraction of these genomes are transcribed and hence are probably functional at the RNA level. A computational survey of vertebrate genomes has predicted thousands of previously unknown ncRNAs with evolutionarily conserved secondary structures.

View Article and Find Full Text PDF