Publications by authors named "Kristin M Hager"

Toxoplasma gondii infection triggers host microtubule rearrangement and organelle recruitment around the parasite vacuole. Factors affecting initial stages of microtubule remodeling are unknown. To illuminate the mechanism, we tested the hypothesis that the parasite actively remodels host microtubules.

View Article and Find Full Text PDF

Micronemal proteins (MICs) are key mediators of cytoadherence and invasion for Toxoplasma gondii. Emerging evidence indicates that carbohydrate binding facilitates Toxoplasma entry into host cells. The recently solved Toxoplasma MIC1s (TgMIC1s) structure reveals the presence of novel specialized domains that can discriminate between glycan residues.

View Article and Find Full Text PDF

Receptor for activated C kinase 1 (RACK1) has been implicated in multiple protein-protein interactions including functioning as a scaffolding protein for signaling molecules. We report the cloning and cellular localization of a RACK1 ortholog (TgRACK1) in the opportunistic pathogen Toxoplasma gondii. The full-length transcript possesses a predicted ORF of 966 bp and codes for a protein of approximately 35 kDa molecular weight.

View Article and Find Full Text PDF

Coatomer coated (COPI) vesicles play a pivotal role for multiple membrane trafficking steps throughout the eukaryotic cell. Our focus is on betaCOP, one of the most well known components of the COPI multi-protein complex. Amino acid differences in betaCOP may dictate functional divergence across species during the course of evolution, especially with regards to the evolutionary pressures on obligate intracellular parasites.

View Article and Find Full Text PDF

Toxoplasma gondii and its apicomplexan relatives (such as Plasmodium falciparum, which causes malaria) are obligate intracellular parasites that rely on sequential protein release from specialized secretory organelles for invasion and multiplication within host cells. Because of the importance of these unusual membrane trafficking pathways for drug development and comparative cell biology, characterizing them is essential. In particular, it is unclear what role retrieval mechanisms play in parasite membrane trafficking or where they operate.

View Article and Find Full Text PDF