Nested hierarchical structure is one of life's most familiar properties and a major component of biological diversity and complexity. However, there is little effort to teach the evolution of the hierarchy of life, as there is little effort to teach biological complexity per se. We propose a framework for teaching biological complexity based on research on evolutionary transitions in individuality (ETI theory).
View Article and Find Full Text PDFCogn Res Princ Implic
June 2020
Background: Spatial thinking skills are strongly correlated with achievement in Science, Technology, Engineering, and Mathematics (STEM) fields and emerging research suggests that interventions aimed at building students' skills will likely yield measurable impacts on learning across K-12 settings. The importance of spatial thinking in science has received increased attention in academic discussions; however, the intentional practice of teaching spatial thinking skills is still largely absent from K-12 education. The translation of science into educational practice is challenging for a variety of reasons, including the difficulty "translating" research findings into practical applications and limited resources to support its development, implementation, and evaluation.
View Article and Find Full Text PDFCogn Res Princ Implic
September 2016
Accurately inferring three-dimensional (3D) structure from only a cross-section through that structure is not possible. However, many observers seem to be unaware of this fact. We present evidence for a 3D amodal completion process that may explain this phenomenon and provide new insights into how the perceptual system processes 3D structures.
View Article and Find Full Text PDFScience, technology, engineering, and mathematics (STEM) disciplines commonly illustrate 3D relationships in diagrams, yet these are often challenging for students. Failing to understand diagrams can hinder success in STEM because scientific practice requires understanding and creating diagrammatic representations. We explore a new approach to improving student understanding of diagrams that convey 3D relations that is based on students generating their own predictive diagrams.
View Article and Find Full Text PDFParticipants studied seven meaningful scene-regions bordered by removable boundaries (30s each). In Experiment 1 (N = 80) participants used visual or haptic exploration and then minutes later, reconstructed boundary position using the same or the alternate modality. Participants in all groups shifted boundary placement outward (boundary extension), but visual study yielded the greater error.
View Article and Find Full Text PDFIs boundary extension (false memory beyond the edges of the view; Intraub & Richardson, 1989) determined solely by the schematic structure of the view or does the quality of the pictorial information impact this error? To examine this color photograph or line-drawing versions of 12 multi-object scenes (Experiment 1: N=64) and 16 single-object scenes (Experiment 2: N=64) were presented for 14-s each. At test, the same pictures were each rated as being the "same", "closer-up" or "farther away" (5-pt scale). Although the layout, the scope of the view, the distance of the main objects to the edges, the background space and the gist of the scenes were held constant, line-drawings yielded greater boundary extension than did their photographic counterparts for multi-object (Experiment 1) and single-object (Experiment 2) scenes.
View Article and Find Full Text PDF