Deregulation of the receptor tyrosine kinase c-Kit is associated with an increasing number of human diseases, including certain cancers and mast cell diseases. Interference of c-Kit signaling with multi-kinase inhibitors has been shown clinically to successfully treat gastrointestinal stromal tumors and mastocytosis. Targeted therapy of c-Kit activity may provide therapeutic advantages against off-target effects for non-oncology applications.
View Article and Find Full Text PDFUse of solvent mapping, based on multiple-copy minimization (MCM) techniques, is common in structure-based drug discovery. The minima of small-molecule probes define locations for complementary interactions within a binding pocket. Here, we present improved methods for MCM.
View Article and Find Full Text PDFA potent and selective c-Kit inhibitor 20 was identified through a structure-activity relationship study. In an in vivo mouse model of mast cell activation, 20 blocked the SCF-induced histamine release with an EC(50) of 26 nM.
View Article and Find Full Text PDFInhibition of c-Kit has the potential to treat mast cell associated fibrotic diseases. We report the discovery of several aminoquinazoline pyridones that are potent inhibitors of c-Kit with greater than 200-fold selectivity against KDR, p38, Lck, and Src. In vivo efficacy of pyridone 16 by dose-dependent inhibition of histamine release was demonstrated in a rodent pharmacodynamic model of mast cell activation.
View Article and Find Full Text PDFDeveloping methods to incorporate protein flexibility into structure-based drug design is an important challenge. Our approach uses multiple protein structures (MPS) to create a receptor-based pharmacophore model of the desired target. We have previously demonstrated the success of the method by applying it to human immunodeficiency virus-1 protease (HIV-1p).
View Article and Find Full Text PDFHIV-1 protease (HIVp) is an important target for the development of therapies to treat AIDS and is one of the classic examples of structure-based drug design. The flap region of HIVp is known to be highly flexible and undergoes a large conformational change upon binding a ligand. Accurately modeling the inherent flexibility of the HIVp system is critical for developing new methods for structure-based drug design.
View Article and Find Full Text PDFWe have developed a receptor-based pharmacophore method which utilizes a collection of protein structures to account for inherent protein flexibility in structure-based drug design. Several procedures were systematically evaluated to derive the most general protocol for using multiple protein structures. Most notably, incorporating more protein flexibility improved the performance of the method.
View Article and Find Full Text PDFAccurate force fields are essential for reproducing the conformational and dynamic behavior of condensed-phase systems. The popular AMBER force field has parameters for monophosphates, but they do not extend well to polyphorylated molecules such as ADP and ATP. This work presents parameters for the partial charges, atom types, bond angles, and torsions in simple polyphosphorylated compounds.
View Article and Find Full Text PDFThe design and synthesis of a novel series of indole derivatives (9) having dual 5-HT transporter reuptake and 5-HT(1A) antagonist activity are described.
View Article and Find Full Text PDF