The large, directional stimuli-response of aligned liquid crystalline elastomers (LCEs) could enable functional utility in robotics, medicine, consumer goods, and photonics. The alignment of LCEs has historically been realized via mechanical alignment of a two-stage reaction. Recent reports widely utilize chain extension reactions of liquid crystal monomers (LCM) to form LCEs that are subject to either surface-enforced or mechanical alignment.
View Article and Find Full Text PDFTwo-dimensional electronic spectroscopy (2DES) has emerged as a powerful method for elucidating the structure-function relationship in photosynthetic systems. In this Perspective, we discuss features of two-dimensional spectroscopy that make it highly suited to address questions about the underlying electronic structure that guides energy- and charge-transfer processes in light-harvesting materials. We briefly describe a pulse-shaping-based implementation of two-dimensional spectroscopy that is making the method widely accessible to problems spanning frequency regimes from the ultraviolet to the mid-infrared.
View Article and Find Full Text PDFWe examine the effect that pulse chirp has on the shape of two- dimensional electronic spectra through calculations and experiments. For the calculations we use a model two electronic level system with a solvent interaction represented by a simple Gaussian correlation function and compare the resulting spectra to experiments carried out on an organic dye molecule (Rhodamine 800). Both calculations and experiments show that distortions due to chirp are most significant when the pulses used in the experiment have different amounts of chirp, introducing peak shape asymmetry that could be interpreted as spectrally dependent relaxation.
View Article and Find Full Text PDFWe report 2D Fourier transform electronic spectroscopy obtained in the pump-probe geometry using a continuum probe. An acousto-optic pulse shaper placed in the pump arm of a standard pump-continuum probe experiment permits 2D spectroscopy that probes a broad spectral range. We demonstrate the method on a simple dye system exhibiting vibrational wavepacket dynamics that modulate the peak shapes of the 2D spectra.
View Article and Find Full Text PDFWe report two-color two-dimensional Fourier transform electronic spectroscopy obtained using an acousto-optic pulse-shaper in a pump-probe geometry. The two-color setup will facilitate the study of energy transfer between electronic transitions that are widely separated in energy. We demonstrate the method at visible wavelengths on the laser dye LDS750 in acetonitrile.
View Article and Find Full Text PDF