Publications by authors named "Kristin Kessler"

Syne-2 (also known as Nesprin-2) is a member of a family of proteins that are found primarily in the outer nuclear membrane, as well as other subcellular compartments. Syne-2 contains a C-terminal KASH transmembrane domain and is part of a protein network that associates the nuclear envelope to the cytoskeleton via the binding to actin filaments. Syne-2 plays a role in nuclear migration, nuclear positioning during retinal development, and in ciliogenesis.

View Article and Find Full Text PDF

Pericentrin (Pcnt) is a multifunctional scaffold protein and mutations in the human gene are associated with several diseases, including ciliopathies. Pcnt plays a crucial role in ciliary development in olfactory receptor neurons, but its function in the photoreceptor-connecting cilium is unknown. We downregulated Pcnt in the retina and via a virus-based RNA interference approach to study Pcnt function in photoreceptors.

View Article and Find Full Text PDF

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa.

View Article and Find Full Text PDF

Skeletal ciliopathies are a heterogeneous group of autosomal recessive osteochondrodysplasias caused by defects in formation, maintenance and function of the primary cilium. Mutations in the underlying genes affect the molecular motors, intraflagellar transport complexes (IFT), or the basal body. The more severe phenotypes are caused by defects of genes of the dynein-2 complex, where mutations in DYNC2H1, WDR34 and WDR60 have been identified.

View Article and Find Full Text PDF

Numerous genes are involved in human growth regulation. Recently, autosomal-recessive inherited variants in centrosomal proteins have been identified in Seckel syndrome, primary microcephaly, or microcephalic osteodysplastic primary dwarfism. Common hallmarks of these syndromic forms are severe short stature and microcephaly.

View Article and Find Full Text PDF

Defects of ciliogenesis have been implicated in a wide range of human phenotypes and play a crucial role in signal transduction and cell-cycle coordination. We used homozygosity mapping in two families with autosomal-recessive short-rib polydactyly syndrome Majewski type to identify mutations in NEK1 as an underlying cause of this lethal osteochondrodysplasia. NEK1 encodes a serine/threonine kinase with proposed function in DNA double-strand repair, neuronal development, and coordination of cell-cycle-associated ciliogenesis.

View Article and Find Full Text PDF