The liver exhibits a remarkable capacity to regenerate following injury. Despite this unique attribute, toxic injury is a leading cause of liver failure. The temporal processes by which the liver senses injury and initiates regeneration remain unclear.
View Article and Find Full Text PDFThe maintenance of redox and metabolic homeostasis is integral to embryonic development. Nuclear factor erythroid 2-related factor 2 (NRF2) is a stress-induced transcription factor that plays a central role in the regulation of redox balance and cellular metabolism. Under homeostatic conditions, NRF2 is repressed by Kelch-like ECH-associated protein 1 (KEAP1).
View Article and Find Full Text PDFGlutamine is a conditionally essential nutrient for many cancer cells, but it remains unclear how consuming glutamine in excess of growth requirements confers greater fitness to glutamine-addicted cancers. By contrasting two breast cancer subtypes with distinct glutamine dependencies, we show that glutamine-indispensable triple-negative breast cancer (TNBC) cells rely on a non-canonical glutamine-to-glutamate overflow, with glutamine carbon routed once through the TCA cycle. Importantly, this single-pass glutaminolysis increases TCA cycle fluxes and replenishes TCA cycle intermediates in TNBC cells, a process that achieves net oxidation of glucose but not glutamine.
View Article and Find Full Text PDFThe coordinated regulation of growth control and metabolic pathways is required to meet the energetic and biosynthetic demands associated with proliferation. Emerging evidence suggests that the Hippo pathway effector Yes-associated protein 1 (YAP) reprograms cellular metabolism to meet the anabolic demands of growth, although the mechanisms involved are poorly understood. Here, we demonstrate that YAP co-opts the sterol regulatory element-binding protein (SREBP)-dependent lipogenic program to facilitate proliferation and tissue growth.
View Article and Find Full Text PDFUnlabelled: Cancer cell metabolism is increasingly recognized as providing an exciting therapeutic opportunity. However, a drug that directly couples targeting of a metabolic dependency with the induction of cell death in cancer cells has largely remained elusive. Here we report that the drug-like small-molecule ironomycin reduces the mitochondrial iron load, resulting in the potent disruption of mitochondrial metabolism.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) is recognized as a critical regulator of cellular energy metabolism impacted by AMP/ATP and ADP/ATP ratios, or glucose- and fatty acid-derived metabolites. However, its ability to sense alterations in amino acid levels is poorly understood. Recent work by Yuan et al (2021) identifies a novel mechanism of AMPK regulation responsive to changes in availability of the sulfur-containing amino acid cysteine.
View Article and Find Full Text PDFInternal tandem duplication of the FMS-like tyrosine kinase 3 gene () occurs in 30% of all acute myeloid leukemias (AML). Limited clinical efficacy of FLT3 inhibitors highlights the need for alternative therapeutic modalities in this subset of disease. Using human and murine models of FLT3-ITD-driven AML, we demonstrate that FLT3-ITD promotes serine synthesis and uptake via ATF4-dependent transcriptional regulation of genes in the serine biosynthesis pathway and neutral amino acid transport.
View Article and Find Full Text PDFDespite significant progress, our understanding of how specific oncogenes transform cells is still limited and likely underestimates the complexity of downstream signalling events. To address this gap, we use mass spectrometry-based chemical proteomics to characterize the global impact of an oncogene on the expressed kinome, and then functionally annotate the regulated kinases. As an example, we identify 63 protein kinases exhibiting altered expression and/or phosphorylation in Src-transformed mammary epithelial cells.
View Article and Find Full Text PDFThe Hippo pathway and its nuclear effector Yap regulate organ size and cancer formation. While many modulators of Hippo activity have been identified, little is known about the Yap target genes that mediate these growth effects. Here, we show that mutant zebrafish exhibit defects in hepatic progenitor potential and liver growth due to impaired glucose transport and nucleotide biosynthesis.
View Article and Find Full Text PDFN-Functionalized amino acids are important building blocks for the preparation of diverse bioactive molecules, including peptides. The development of sustainable manufacturing routes to chiral N-alkylated amino acids remains a significant challenge in the pharmaceutical and fine-chemical industries. Herein we report the discovery of a structurally diverse panel of biocatalysts which catalyze the asymmetric synthesis of N-alkyl amino acids through the reductive coupling of ketones and amines.
View Article and Find Full Text PDFThe assessment of the suitability of novel targets to intervention by different modalities, small molecules or antibodies, is increasingly seen as important in helping to select the most progressable targets at the outset of a drug discovery project. This perspective considers differing aspects of tractability and how it can be assessed using and experimental approaches. We also share some of our experiences in using these approaches.
View Article and Find Full Text PDFImmunotherapy has revolutionized outcomes for cancer patients, but the mechanisms of resistance remain poorly defined. We used a series of whole-genome clustered regularly interspaced short palindromic repeat (CRISPR)-based screens performed in vitro and in vivo to identify mechanisms of tumor immune evasion from cytotoxic lymphocytes [CD8 T cells and natural killer (NK) cells]. Deletion of key genes within the tumor necrosis factor (TNF) signaling, interferon-γ (IFN-γ) signaling, and antigen presentation pathways provided protection of tumor cells from CD8 T cell-mediated killing and blunted antitumor immune responses in vivo.
View Article and Find Full Text PDFChemotherapy resistance is a major barrier to the treatment of triple-negative breast cancer (TNBC), and strategies to circumvent resistance are required. Using and metabolic profiling of TNBC cells, we show that an increase in the abundance of pyrimidine nucleotides occurs in response to chemotherapy exposure. Mechanistically, elevation of pyrimidine nucleotides induced by chemotherapy is dependent on increased activity of the pyrimidine synthesis pathway.
View Article and Find Full Text PDFSelenium, an essential micronutrient known for its cancer prevention properties, is incorporated into a class of selenocysteine-containing proteins (selenoproteins). Selenoprotein H (SepH) is a recently identified nucleolar oxidoreductase whose function is not well understood. Here we report that seph is an essential gene regulating organ development in zebrafish.
View Article and Find Full Text PDFThe Hippo pathway is an important regulator of organ size and tumorigenesis. It is unclear, however, how Hippo signalling provides the cellular building blocks required for rapid growth. Here, we demonstrate that transgenic zebrafish expressing an activated form of the Hippo pathway effector Yap1 (also known as YAP) develop enlarged livers and are prone to liver tumour formation.
View Article and Find Full Text PDFResistance to cytotoxic chemotherapy drugs, including doxorubicin, is a significant obstacle to the effective treatment of breast cancer. Here, we have identified a mechanism by which the PI3K/Akt pathway mediates resistance to doxorubicin. In addition to inducing DNA damage, doxorubicin triggers sustained activation of Akt signaling in breast cancer cells.
View Article and Find Full Text PDFThe phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling network is a master regulator of processes that contribute to tumorigenesis and tumor maintenance. The PI3K pathway also plays a critical role in driving resistance to diverse anti-cancer therapies. This review article focuses on mechanisms by which the PI3K pathway contributes to therapy resistance in cancer, and highlights potential combination therapy strategies to circumvent resistance driven by PI3K signaling.
View Article and Find Full Text PDFHuman fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer.
View Article and Find Full Text PDFToxic liver injury is a leading cause of liver failure and death because of the organ's inability to regenerate amidst massive cell death, and few therapeutic options exist. The mechanisms coordinating damage protection and repair are poorly understood. Here, we show that S-nitrosothiols regulate liver growth during development and after injury in vivo; in zebrafish, nitric-oxide (NO) enhanced liver formation independently of cGMP-mediated vasoactive effects.
View Article and Find Full Text PDFIntegrin recycling is critical for cell migration. Protein kinase D (PKD) mediates signals from the platelet-derived growth factor receptor (PDGF-R) to control αvβ3 integrin recycling. We now show that Rabaptin-5, a Rab5 effector in endosomal membrane fusion, is a PKD substrate.
View Article and Find Full Text PDFBreast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy.
View Article and Find Full Text PDFNucleotide-binding domain leucine-rich repeat proteins (NLRs) play a key role in immunity and disease through their ability to modulate inflammation in response to pathogen-derived and endogenous danger signals. Here, we identify the requirements for activation of NLRP1, an NLR protein associated with a number of human pathologies, including vitiligo, rheumatoid arthritis, and Crohn disease. We demonstrate that NLRP1 activity is dependent upon ASC, which associates with the C-terminal CARD domain of NLRP1.
View Article and Find Full Text PDFBackground: Isothiocyanates are phytochemicals with a broad array of effects in biological systems. Bioactivity includes the stimulation of cellular antioxidant systems, induction of apoptosis and interference with cytokine production and activity. Epidemiological evidence and experimental studies indicate that naturally occurring isothiocyanates and synthetic derivatives have anti-cancer and anti-inflammatory properties.
View Article and Find Full Text PDFDespite the success of genomics in identifying new essential bacterial genes, there is a lack of sustainable leads in antibacterial drug discovery to address increasing multidrug resistance. Type IIA topoisomerases cleave and religate DNA to regulate DNA topology and are a major class of antibacterial and anticancer drug targets, yet there is no well developed structural basis for understanding drug action. Here we report the 2.
View Article and Find Full Text PDFMitochondrial peroxiredoxin 3 (Prx 3) is rapidly oxidized in cells exposed to phenethyl isothiocyanate (PEITC) and auranofin (AFN), but the mechanism of oxidation is unclear. Using HL-60 cells deplete of mitochondrial DNA we show that peroxiredoxin 3 oxidation and cytotoxicity requires a functional respiratory chain. Thioredoxin reductase (TrxR) could be inhibited by up to 90% by auranofin without direct oxidation of peroxiredoxin 3.
View Article and Find Full Text PDF