The short half-life of coagulation factor IX (FIX) for haemophilia B (HB) therapy has been prolonged through fusion with human serum albumin (HSA), which drives the neonatal Fc receptor (FcRn)-mediated recycling of the chimera. However, patients would greatly benefit from further FIX-HSA half-life extension. In the present study, we designed a FIX-HSA variant through the engineering of both fusion partners.
View Article and Find Full Text PDFThe neonatal Fc receptor (FcRn) was first recognized for its role in transfer of maternal IgG to the foetus or newborn, providing passive immunity early in life. However, it has become clear that the receptor is versatile, widely expressed and plays an indispensable role in both immunological and non-immunological processes throughout life. The receptor rescues immunoglobulin G (IgG) and albumin from intracellular degradation and shuttles the ligands across polarized cell barriers, in all cases via a pH-dependent binding-and-release mechanism.
View Article and Find Full Text PDF