Immunoglobulin G (IgG) replacement therapy is the standard of care for patients with primary immunodeficiencies with antibody deficiencies. Intravenous (IVIG), subcutaneous (SCIG), and hyaluronidase-facilitated subcutaneous immunoglobulin (fSCIG) therapies differ in their pharmacokinetic (PK) profiles, administration routes, and dosing regimens. Information on use of subcutaneous therapy in IgG treatment-naive patients is limited.
View Article and Find Full Text PDFPurpose: To assess the pharmacokinetics (PK) of subcutaneous immunoglobulin (SCIG) and hyaluronidase-facilitated SCIG (fSCIG) therapy across body mass index (BMI) and age categories in patients with primary immunodeficiency diseases (PIDD) previously treated with intravenous immunoglobulin (IVIG).
Methods: Using our previously published integrated population PK model based on data from eight clinical trials, simulations were conducted to examine the effects of BMI and age on serum immunoglobulin G (IgG) PK after administration of SCIG 0.15 g/kg weekly or fSCIG 0.
Plasma-derived immunoglobulin G (IgG) replacement therapy represents the current standard of care for patients with primary or secondary antibody deficiencies, and includes intravenous (IVIG), subcutaneous (SCIG) and facilitated subcutaneous (fSCIG) immunoglobulin products. A holistic understanding of the pharmacokinetics (PK) of IgG for these therapies is key to optimizing their clinical use. We developed an integrated population PK model using non-linear mixed-effects modeling based on data from eight clinical trials (each ≥ 1 year duration; n = 384 patients), which simultaneously characterized IgG PK profiles of IVIG, SCIG or fSCIG in patients with primary immunodeficiencies and identified covariate effects.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
May 2022
The illicit use of -hydroxybutyric acid (GHB), and its prodrug, -butyrolactone (GBL), results in severe adverse effects including sedation, coma, respiratory depression, and death. Current treatment of GHB/GBL overdose is limited to supportive care. Recent reports indicate that GHB-related deaths are on the rise; a specific treatment may reduce lethality associated with GHB/GBL.
View Article and Find Full Text PDFRenal impairment (RI) is a highly prevalent disease which can alter the pharmacokinetics (PK) of xenobiotics, including those that are predominately metabolized. The expression and activity of drug metabolizing enzymes (DMEs) and protein binding of compounds has been demonstrated to be affected in RI. A simulation based approach allows for the characterization of the impact of changes in these factors on the PK of compounds which are highly metabolized and allows for improved prediction of PK in RI.
View Article and Find Full Text PDFRenal impairment (RI) significantly impacts the clearance of drugs through changes in the glomerular filtration rate, protein binding and alterations in the expression of renal drug transport proteins and hepatic metabolizing enzymes. The objectives of this study were to evaluate quantitatively the effects of renal impairment on the pharmacokinetics of drugs undergoing renal transporter-mediated reabsorption. A previously published semi-mechanistic kidney model incorporating physiologically relevant fluid reabsorption and transporter-mediated active renal reabsorption (PMID: 26341876) was utilized in this study.
View Article and Find Full Text PDFRenal impairment (RI) is a major health concern with a growing prevalence. RI leads to various physiologic changes, in addition to a decrease in glomerular filtration rate, that impact the pharmacokinetics (PK) and, specifically, the renal clearance (CL) of compounds, including alterations of drug transporter (DT)/drug-metabolizing enzyme expression and activity, as well as protein binding. The objectives of this study were to use a physiologically based pharmacokinetic modeling platform to 1) assess the impact of alterations in DT expression, toxin-drug interactions (TDIs), and free fraction (f) on PK predictions for the organic cation transporter 2/multidrug and toxin extrusion protein 1 substrate metformin in RI populations; and 2) use available in vitro data to improve predictions of CL for two actively secreted substrates, metformin and ranitidine.
View Article and Find Full Text PDFThe drug of abuse γ-hydroxybutyric acid (GHB) demonstrates complex toxicokinetics with dose-dependent metabolic and renal clearance. GHB is a substrate of monocarboxylate transporters (MCTs) which are responsible for the saturable renal reabsorption of GHB. MCT expression is observed in many tissues and therefore may impact the tissue distribution of GHB.
View Article and Find Full Text PDFBackground: γ-hydroxybutyrate (GHB) has a high potential for illicit use; overdose of this compound results in sedation, respiratory depression and death. Tolerance to the hypnotic/sedative and electroencephalogram effects of GHB occurs with chronic GHB administration; however, tolerance to respiratory depression has not been evaluated. GHB toxicodynamic effects are mediated predominantly by GABA receptors.
View Article and Find Full Text PDFAn overdose of γ-hydroxybutyric acid (GHB), a drug of abuse, results in fatality caused by severe respiratory depression. In this study, a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model was developed to characterize monocarboxylate transporter 1 (MCT1)-mediated transport of GHB, as well as effects of GHB on respiration frequency, for IV doses of 200, 600, and 1500 mg/kg in rats. The proposed PK/PD model for GHB consists of nonlinear metabolism of GHB in the liver, MCT1-mediated renal reabsorption with physiologically relevant concurrent fluid reabsorption, MCT1-mediated uptake into the brain, and direct effects of binding of GHB to GABA receptors on the PD parameter, respiration frequency.
View Article and Find Full Text PDF