Proc Natl Acad Sci U S A
August 2022
Understanding spoken language requires transforming ambiguous acoustic streams into a hierarchy of representations, from phonemes to meaning. It has been suggested that the brain uses prediction to guide the interpretation of incoming input. However, the role of prediction in language processing remains disputed, with disagreement about both the ubiquity and representational nature of predictions.
View Article and Find Full Text PDFRecently, cognitive neuroscientists have increasingly studied the brain responses to narratives. At the same time, we are witnessing exciting developments in natural language processing where large-scale neural network models can be used to instantiate cognitive hypotheses in narrative processing. Yet, they learn from text alone and we lack ways of incorporating biological constraints during training.
View Article and Find Full Text PDFThe brain's remarkable capacity to process spoken language virtually in real time requires fast and efficient information processing machinery. In this study, we investigated how frequency-specific brain dynamics relate to models of probabilistic language prediction during auditory narrative comprehension. We recorded MEG activity while participants were listening to auditory stories in Dutch.
View Article and Find Full Text PDFNeurosci Biobehav Rev
December 2017
Cognitive neuroscientists of language comprehension study how neural computations relate to cognitive computations during comprehension. On the cognitive part of the equation, it is important that the computations and processing complexity are explicitly defined. Probabilistic language models can be used to give a computationally explicit account of language complexity during comprehension.
View Article and Find Full Text PDF