Publications by authors named "Kristiina Nygren"

is a necrotrophic mycoparasitic fungus, used for biological control of plant pathogenic fungi. A better understanding of the underlying mechanisms resulting in successful biocontrol is important for knowledge-based improvements of the application and use of biocontrol in agricultural production systems. Transcriptomic analyses revealed that responded with both common and specific gene expression during interactions with the fungal prey species and .

View Article and Find Full Text PDF

In the vast majority of sexual life cycles, fusion between single-celled gametes is directly followed by nuclear fusion, leading to a diploid zygote and a lifelong commitment between two haploid genomes. Mushroom-forming basidiomycetes differ in two key respects. First, the multicellular haploid mating partners are fertilized in their entirety, each cell being a gamete that simultaneously can behave as a female, i.

View Article and Find Full Text PDF

Clonostachys rosea is a mycoparasitic fungus that can control several important plant diseases. Here, we report on the genome sequencing of C. rosea and a comparative genome analysis, in order to resolve the phylogenetic placement of C.

View Article and Find Full Text PDF

Background: The broadly accepted pattern of rapid evolution of reproductive genes is primarily based on studies of animal systems, although several examples of rapidly evolving genes involved in reproduction are found in diverse additional taxa. In fungi, genes involved in mate recognition have been found to evolve rapidly. However, the examples are too few to draw conclusions on a genome scale.

View Article and Find Full Text PDF

Here, we present a study of the molecular evolution of the pheromone receptor genes (pre-1 and pre-2) in Neurospora taxa with different mating systems. We focus on comparisons between heterothallic and homothallic taxa, reproducing sexually by outcrossing and by intrahaploid selfing, respectively. Our general aim was to use a phylogenetic framework to investigate whether the evolutionary trajectory of the pheromone and receptor genes in Neurospora differs between heterothallic and homothallic taxa, and among the homothallic lineages/clades previously indicated to represent independent switches from heterothallism to homothallism in the evolutionary history of the genus.

View Article and Find Full Text PDF

The filamentous ascomycete genus Neurospora encompasses taxa with a wide range of reproductive modes. Sexual reproduction in this genus can be divided into three major modes; heterothallism (self-incompatibility), homothallism (self-compatibility) and pseudohomothallism (partial self-compatibility). In addition to the sexual pathway, most of the heterothallic taxa propagate with morphologically distinct, vegetative dissemination propagules (macroconidia), while this feature is undetected in the majority of the homothallic taxa.

View Article and Find Full Text PDF

In this study, we investigated the genealogies of genes important for sexual identity, i.e. mating-type (mat) and pheromone-receptor (pre) genes, among heterothallic and peudohomothallic taxa of Neurospora.

View Article and Find Full Text PDF

Comparative sequencing studies among a wide range of taxonomic groups, including fungi, provide the overall pattern that reproductive genes evolve more rapidly than other genes, and this divergence is believed to be important in the establishment of reproductive barriers between species. In this study, we investigated the molecular evolution of the pheromone receptor genes pre-1 and pre-2 of strains belonging to 12 and 13 heterothallic taxa, respectively, of the model genus Neurospora. Furthermore, we examined the regulatory pattern of both pheromone precursor and receptor genes during sexual crosses of Neurospora crassa and Neurospora intermedia, for which reinforcement of interspecific reproductive barriers in sympatry previously has been documented.

View Article and Find Full Text PDF