Publications by authors named "Kristiina Huttu"

Depolarizing and excitatory GABA actions are thought to be important in cortical development. We show here that GABA has no excitatory action on CA3 pyramidal neurons in hippocampal slices from neonatal NKCC1(-/-) mice that lack the Na-K-2Cl cotransporter isoform 1. Strikingly, NKCC1(-/-) slices generated endogenous network events similar to giant depolarizing potentials (GDPs), but, unlike in wild-type slices, the GDPs were not facilitated by the GABA(A) agonist isoguvacine or blocked by the NKCC1 inhibitor bumetanide.

View Article and Find Full Text PDF

The CA3 area of the mature hippocampus is known for its ability to generate intermittent network activity both in physiological and in pathological conditions. We have recently shown that in the early postnatal period, the intrinsic bursting of interconnected CA3 pyramidal neurons generates network events, which were originally called giant depolarizing potentials (GDPs). The voltage-dependent burst activity of individual pyramidal neurons is promoted by the well-known depolarizing action of endogenous GABA on immature neurons.

View Article and Find Full Text PDF

Spontaneous periodic network events are a characteristic feature of developing neuronal networks, and they are thought to play a crucial role in the maturation of neuronal circuits. In the immature hippocampus, these types of events are seen in intracellular recordings as giant depolarizing potentials (GDPs) during the stage of neuronal development when GABA(A)-mediated transmission is depolarizing. However, the precise mechanism how GABAergic transmission promotes GDP occurrence is not known.

View Article and Find Full Text PDF

A hallmark in the development of GABAergic neurotransmission is the switch in GABA(A)-mediated responses from depolarizing to hyperpolarizing. This occurs due to a gradual decrease in the intracellular concentration of chloride caused by the functional expression of the neuron-specific K-Cl cotransporter KCC2. Whether a mere increase in the amount of KCC2 protein is the rate-limiting step in vivo, or a further activation of the otherwise nonfunctional cotransporter is required, is not clear.

View Article and Find Full Text PDF

GABA uptake limits GABA actions during synaptic responses when the density of active release sites is high or multiple axons are synchronously activated. GABA transporter-1 (GAT-1) is the main neuronal GABA transporter subtype and is already expressed in the early postnatal rat hippocampus. However, previous studies have demonstrated little functional role for the transporter during this developmental period.

View Article and Find Full Text PDF

Identification of the molecular mechanisms that enable synchronous firing of CA1 pyramidal neurons is central to the understanding of the functional properties of this major hippocampal output pathway. Using microfluorescence measurements of intraneuronal pH, in situ hybridization, as well as intracellular, extracellular, and K+-sensitive microelectrode recordings, we show now that the capability for synchronous gamma-frequency (20-80 Hz) firing in response to high-frequency stimulation (HFS) emerges abruptly in the rat hippocampus at approximately postnatal day 12. This was attributable to a steep developmental upregulation of intrapyramidal carbonic anhydrase isoform VII, which acts as a key molecule in the generation of HFS-induced tonic GABAergic excitation.

View Article and Find Full Text PDF