Background: Despite continuing technological advances, the cost for large-scale genotyping of a high number of samples can be prohibitive. The purpose of this study is to design a cost-saving strategy for SNP genotyping. We suggest making use of pooling, a group testing technique, to drop the amount of SNP arrays needed.
View Article and Find Full Text PDFWith capabilities of sequencing ancient DNA to high coverage often limited by sample quality or cost, imputation of missing genotypes presents a possibility to increase the power of inference as well as cost-effectiveness for the analysis of ancient data. However, the high degree of uncertainty often associated with ancient DNA poses several methodological challenges, and performance of imputation methods in this context has not been fully explored. To gain further insights, we performed a systematic evaluation of imputation of ancient data using Beagle v4.
View Article and Find Full Text PDFDimensionality reduction is a data transformation technique widely used in various fields of genomics research. The application of dimensionality reduction to genotype data is known to capture genetic similarity between individuals, and is used for visualization of genetic variation, identification of population structure as well as ancestry mapping. Among frequently used methods are principal component analysis, which is a linear transform that often misses more fine-scale structures, and neighbor-graph based methods which focus on local relationships rather than large-scale patterns.
View Article and Find Full Text PDFAdvances in whole-genome sequencing have greatly reduced the cost and time of obtaining raw genetic information, but the computational requirements of analysis remain a challenge. Serverless computing has emerged as an alternative to using dedicated compute resources, but its utility has not been widely evaluated for standardized genomic workflows. In this study, we define and execute a best-practice joint variant calling workflow using the SWEEP workflow management system.
View Article and Find Full Text PDFBackground: The advent of next-generation sequencing (NGS) has made whole-genome sequencing of cohorts of individuals a reality. Primary datasets of raw or aligned reads of this sort can get very large. For scientific questions where curated called variants are not sufficient, the sheer size of the datasets makes analysis prohibitively expensive.
View Article and Find Full Text PDF