Publications by authors named "Kristien Reekmans"

In the quest to unravel its functional significance, neuroglobin (Ngb), a brain-specific neuroprotective protein, has recently been proposed as an actor in neurodevelopment. As neural stem cells (NSCs) are fundamental during brain development, the present study aimed at investigating the role of Ngb in the growth and proliferation of NSCs by comparing an Ngb-floxed (Ngb-)NSC line, equivalent to the wild-type cellular situation, with an in-house created Ngb knockout (Ngb-)NSC line. Ngb-NSCs were characterized by an increased growth and proliferation capacity in vitro, supported by RNA sequencing and western blot results reporting the downregulation of Cdkn1a and the upregulation of Cdk6, both enhancing the cell cycle.

View Article and Find Full Text PDF

Background: Promoting the neuroprotective and repair-inducing effector functions of microglia and macrophages, by means of M2 polarisation or alternative activation, is expected to become a new therapeutic approach for central nervous system (CNS) disorders in which detrimental pro-inflammatory microglia and/or macrophages display a major contribution to the neuropathology. In this study, we present a novel in vivo approach using intracerebral grafting of mesenchymal stem cells (MSC) genetically engineered to secrete interleukin 13 (IL13-MSC).

Methods: In the first experimental setup, control MSC and IL13-MSC were grafted in the CNS of eGFP bone marrow chimaeric C57BL/6 mice to histologically evaluate IL13-mediated expression of several markers associated with alternative activation, including arginase1 and Ym1, on MSC graft-recognising microglia and MSC graft-infiltrating macrophages.

View Article and Find Full Text PDF

Transplantation of mesenchymal stem cells (MSCs) into injured or diseased tissue-for the in situ delivery of a wide variety of MSC-secreted therapeutic proteins-is an emerging approach for the modulation of the clinical course of several diseases and traumata. From an emergency point-of-view, allogeneic MSCs have numerous advantages over patient-specific autologous MSCs since "off-the-shelf" cell preparations could be readily available for instant therapeutic intervention following acute injury. Although we confirmed the in vitro immunomodulatory capacity of allogeneic MSCs on antigen-presenting cells with standard coculture experiments, allogeneic MSC grafts were irrevocably rejected by the host's immune system upon either intramuscular or intracerebral transplantation.

View Article and Find Full Text PDF

Transplantation of neural stem cells (NSC) in diseased or injured brain tissue is widely studied as a potential treatment for various neurological pathologies. However, effective cell replacement therapy relies on the intrinsic capacity of cellular grafts to overcome hypoxic and/or immunological barriers after transplantation. In this context, it is hypothesized that structural support for grafted NSC will be of utmost importance.

View Article and Find Full Text PDF

Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and culture eGFP(+) neural and fibroblast(-like) stem cells from embryonic mouse tissue.

View Article and Find Full Text PDF

Although intracerebral transplantation of various fibroblast(-like) cell populations has been shown feasible, little is known about the actual in vivo remodeling of these cellular grafts and their environment. In this study, we aimed to compare the in vitro and in vivo behavior of two phenotypically similar-but developmentally distinct-fibroblast-like cell populations, namely, mouse embryonic fibroblasts (mEFs) and mouse fetal membrane-derived stromal cells (mFMSCs). While both mEFs and mFMSCs are readily able to reduce TNF-α secretion by LPS/IFN-γ-activated BV-2 microglia, mFMSCs and mEFs display strikingly opposite behavior with regard to VEGF production under normal and inflammatory conditions.

View Article and Find Full Text PDF

Over the past decade a lot of research has been performed towards the therapeutic use of mesenchymal stem cells (MSCs) in neurodegenerative and neuroinflammatory diseases. MSCs have shown to be beneficial in different preclinical studies of central nervous system (CNS) disorders due to their immunomodulatory properties and their capacity to secrete various growth factors. Nevertheless, most of the transplanted cells die within the first hours after transplantation and induce a neuroinflammatory response.

View Article and Find Full Text PDF

Stem cell transplantation in the central nervous system (CNS) is currently under intensive investigation as a novel therapeutic approach for a variety of brain disorders and/or injuries. However, one of the main hurdles at the moment is the lack of standardized procedures to evaluate cell graft survival and behavior following transplantation into CNS tissue, thereby leading to the publication of confusing and/or conflicting research results. In this chapter, we therefore provide validated in vivo bioluminescence and postmortem histological procedures to quantitatively determine: (a) the survival of grafted stem cells, and (b) the microglial and astroglial cell responses following cell grafting.

View Article and Find Full Text PDF
Article Synopsis
  • NSCs show potential for treating central nervous system disorders but face significant challenges with survival rates after transplantation, as only a small fraction remain viable long-term.
  • Initial studies reveal that up to 80% of grafted NSCs may die within the first 24 hours due to a hypoxic environment, leading to strong immune system responses in the brain.
  • The survival of NSCs worsens over time, dropping to about 1% of the initial number, highlighting the need for a better understanding of these early post-transplantation processes to improve therapeutic outcomes.
View Article and Find Full Text PDF

Although cell transplantation is increasingly suggested to be beneficial for the treatment of various neurodegenerative diseases, the therapeutic application of such intervention is currently hindered by the limited knowledge regarding central nervous system (CNS) transplantation immunology. In this study, we aimed to investigate the early post transplantation innate immune events following grafting of autologous mesenchymal stromal cells (MSC) in the CNS of immune competent mice. First, the survival of grafted Luciferase/eGFP-expressing MSC (MSC-Luc/eGFP) was demonstrated to be stable from on day 3 post implantation using in vivo bioluminescence imaging (BLI), which was further confirmed by quantitative histological analysis of MSC-Luc/eGFP graft survival.

View Article and Find Full Text PDF

During the past decade, stem cell transplantation has gained increasing interest as primary or secondary therapeutic modality for a variety of diseases, both in preclinical and clinical studies. However, to date results regarding functional outcome and/or tissue regeneration following stem cell transplantation are quite diverse. Generally, a clinical benefit is observed without profound understanding of the underlying mechanism(s).

View Article and Find Full Text PDF

Cell transplantation has been suggested to display several neuroprotective and/or neuroregenerative effects in animal models of central nervous system (CNS) trauma. However, while most studies report on clinical observations, currently little is known regarding the actual fate of the cell populations grafted and whether or how the brain's innate immune system, mainly directed by activated microglia and astrocytes, interacts with autologous cellular implants. In this study, we grafted well-characterized neural stem cell, mouse embryonic fibroblast, dendritic cell, bone marrow mononuclear cell, and splenocyte populations, all isolated or cultured from C57BL/6-eGFP transgenic mice, below the capsula externa (CE) of healthy C57BL/6 mice and below the inflamed/demyelinated CE of cuprizone-treated C57BL/6 mice.

View Article and Find Full Text PDF

Stem cell transplantation holds great promise for restoration of neural function in various neurodegenerative disorders, including multiple sclerosis (MS). However, many questions remain regarding the true efficacy and precise mode of action of stem cell-based therapeutic approaches. Therefore, in this article, we will first discuss the ideal route and/or timing of stem cell-based therapies for experimental autoimmune encephalomyelitis (EAE), the most used preclinical animal model for MS.

View Article and Find Full Text PDF

Transplantation of neural stem cells (NSC) is hoped to become a promising primary or secondary therapy for the treatment of various neurodegenerative disorders of the central nervous system (CNS), as demonstrated by multiple pre-clinical animal studies in which functional recovery has already been demonstrated. However, for NSC therapy to be successful, the first challenge will be to define a transplantable cell population. In the first part of this review, we will briefly discuss the main features of ex vivo culture and characterisation of NSC.

View Article and Find Full Text PDF

Currently, much attention is given to the development of cellular therapies for treatment of central nervous system (CNS) injuries. Diverse cell implantation strategies, either to directly replace damaged neural tissue or to create a neuroregenerative environment, are proposed to restore impaired brain function. However, because of the complexity of the CNS, it is now becoming clear that the contribution of cell implantation into the brain will mainly act in a supportive manner.

View Article and Find Full Text PDF

While neural stem cells (NSCs) are widely expected to become a therapeutic agent for treatment of severe injuries to the central nervous system (CNS), currently there are only few detailed preclinical studies linking cell fate with experimental outcome. In this study, we aimed to validate whether IV administration of allogeneic NSC can improve experimental autoimmune encephalomyelitis (EAE), a well-established animal model for human multiple sclerosis (MS). For this, we cultured adherently growing luciferase-expressing NSCs (NSC-Luc), which displayed a uniform morphology and expression profile of membrane and intracellular markers, and which displayed an in vitro differentiation potential into neurons and astrocytes.

View Article and Find Full Text PDF

Although adult and embryonic stem cell-based therapy for central nervous system (CNS) injury is being developed worldwide, less attention is given to the immunological aspects of allogeneic cell implantation in the CNS. The latter is of major importance because, from a practical point of view, future stem cell-based therapy for CNS injury will likely be performed using well-characterised allogeneic stem cell populations. In this study, we aimed to further describe the immunological mechanism leading to rejection of allogeneic bone marrow-derived stromal cells (BM-SC) after implantation in murine CNS.

View Article and Find Full Text PDF

Background: Cell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics.

Results: In this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac).

View Article and Find Full Text PDF