Publications by authors named "Kristie Yu"

The gut microbiome is emerging as an important modulator of the anti-seizure effects of the classic ketogenic diet. However, many variations of the ketogenic diet are used clinically to treat refractory epilepsy, and how different dietary formulations differentially modify the gut microbiome in ways that impact seizure outcome is poorly understood. We find that clinically prescribed ketogenic infant formulas vary in macronutrient ratio, fat source, and fiber content and also in their ability to promote resistance to 6-Hz psychomotor seizures in mice.

View Article and Find Full Text PDF
Article Synopsis
  • ) Drug efflux transporters, like P-glycoprotein (P-gp), play a crucial role in how drugs are absorbed and their potential toxicity, but their interaction with gut microbial metabolites is not fully understood.
  • ) Research found that a specific gut bacterium from the Actinobacterium family enhances drug absorption in mice by producing a factor that inhibits P-gp’s activity.
  • ) The study also identified genes linked to this inhibition and highlighted certain small polar metabolites that could be key players, stressing the need to consider gut microbiota in drug metabolism beyond just what happens in the liver.
View Article and Find Full Text PDF

The gut microbiota interacts directly with dietary nutrients and has the ability to modify host feeding behavior, but the underlying mechanisms remain poorly understood. Select gut bacteria digest complex carbohydrates that are non-digestible by the host and liberate metabolites that serve as additional energy sources and pleiotropic signaling molecules. Here we use a gnotobiotic mouse model to examine how differential fructose polysaccharide metabolism by commensal gut bacteria influences host preference for diets containing these carbohydrates.

View Article and Find Full Text PDF

The maternal microbiome is an important regulator of gestational health, but how it affects the placenta as the interface between mother and fetus remains unexplored. Here, we show that the maternal gut microbiota supports placental development in mice. Depletion of the maternal gut microbiota restricts placental growth and impairs feto-placental vascularization.

View Article and Find Full Text PDF

Bacteria from the Turicibacter genus are prominent members of the mammalian gut microbiota and correlate with alterations in dietary fat and body weight, but the specific connections between these symbionts and host physiology are poorly understood. To address this knowledge gap, we characterize a diverse set of mouse- and human-derived Turicibacter isolates, and find they group into clades that differ in their transformations of specific bile acids. We identify Turicibacter bile salt hydrolases that confer strain-specific differences in bile deconjugation.

View Article and Find Full Text PDF

The maternal microbiome is an important regulator of gestational health, but how it impacts the placenta as the interface between mother and fetus remains unexplored. Here we show that the maternal gut microbiota supports placental development in mice. Depletion of the maternal gut microbiota restricts placental growth and impairs feto-placental vascularization.

View Article and Find Full Text PDF

The gut microbiota regulates host metabolism and feeding behavior. A new study shows that microbiota depletion leads to sucrose overconsumption and increases motivation to obtain sucrose in mice, suggesting that the gut microbiota suppresses overconsumption of palatable foods.

View Article and Find Full Text PDF

The brain and gastrointestinal tract are critical sensory organs responsible for detecting, relaying, integrating, and responding to signals derived from the internal and external environment. At the interface of this sensory function, immune cells in the intestines and brain consistently survey environmental factors, eliciting responses that inform on the physiological state of the body. Recent research reveals that cross-talk along the gut-brain axis regulates inflammatory nociception, inflammatory responses, and immune homeostasis.

View Article and Find Full Text PDF

The gut microbiota has the capacity to affect host appetite via intestinal satiety pathways, as well as complex feeding behaviors. In this Review, we highlight recent evidence that the gut microbiota can modulate food preference across model organisms. We discuss effects of the gut microbiota on the vagus nerve and brain regions including the hypothalamus, mesolimbic system, and prefrontal cortex, which play key roles in regulating feeding behavior.

View Article and Find Full Text PDF

Background: Darwin's finches are a clade of 19 species of passerine birds native to the Galápagos Islands, whose biogeography, specialized beak morphologies, and dietary choices-ranging from seeds to blood-make them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored.

Results: We characterized the microbial community associated with 12 species of Darwin's finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands.

View Article and Find Full Text PDF
Article Synopsis
  • The GI tract has a lot of a chemical called serotonin, which affects how our body works, but we don't fully understand how it is made there.
  • Researchers found that special bacteria in our gut help create more serotonin by working with specific cells.
  • These bacteria and their byproducts can change how we digest food and how our blood works, showing that our gut and the bacteria living in it are really important for our health.
View Article and Find Full Text PDF

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of childhood associated with a poor prognosis. Recently, massively parallel sequencing has identified recurrent mutations in the SKI domain of SETBP1 in a variety of myeloid disorders. These lesions were detected in nearly 10% of patients with JMML and have been characterized as secondary events.

View Article and Find Full Text PDF