Chemical physics plays a large role in determining the isotopic compositions of gases in Earth's atmosphere, which in turn provide fundamental insights into the sources, sinks, and transformations of atmospheric gases and particulates and their influence on climate. This review focuses on the kinetic and photolysis isotope effects relevant to understanding the isotope compositions of atmospheric ozone, carbon dioxide, methane, nitrous oxide, and other gases and their historical context. The discussion includes non-mass-dependent isotope compositions of oxygen-containing species and a brief overview of the recent growth of clumped isotope measurements at natural isotopic abundances, that is, of molecules containing more than one rare isotope.
View Article and Find Full Text PDFThe unimolecular decomposition of (CH3)2COO and (CD3)2COO was measured by direct detection of the Criegee intermediate at temperatures from 283 to 323 K using time-resolved UV absorption spectroscopy. The unimolecular rate coefficient kd for (CH3)2COO shows a strong temperature dependence, increasing from 269 ± 82 s(-1) at 283 K to 916 ± 56 s(-1) at 323 K with an Arrhenius activation energy of ∼6 kcal mol(-1). The bimolecular rate coefficient for the reaction of (CH3)2COO with SO2, kSO2, was also determined in the temperature range 283 to 303 K.
View Article and Find Full Text PDFThe kinetics of the reaction of CH2OO with water vapor was measured directly with UV absorption at temperatures from 283 to 324 K. The observed CH2OO decay rate is second order with respect to the H2O concentration, indicating water dimer participates in the reaction. The rate coefficient of the CH2OO reaction with water dimer can be described by an Arrhenius expression k(T) = A exp(-Ea/RT) with an activation energy of -8.
View Article and Find Full Text PDFThe dynamics of the O((1)D) + Xe electronic quenching reaction was investigated in a crossed beam experiment at four collision energies. Marked large-scale oscillations in the differential cross sections were observed for the inelastic scattering products, O((3)P) and Xe. The shape and relative phases of the oscillatory structure depend strongly on collision energy.
View Article and Find Full Text PDFThe UV spectrum of CH3CHOO was measured by transient absorption in a flow cell at 295 K. The absolute absorption cross sections of CH3CHOO were measured by laser depletion in a molecular beam to be (1.06 ± 0.
View Article and Find Full Text PDFThe dynamics of the (18)O((3)P) + (32)O2 isotope exchange reaction were studied using crossed atomic and molecular beams at collision energies (E(coll)) of 5.7 and 7.3 kcal/mol, and experimental results were compared with quantum statistical (QS) and quasi-classical trajectory (QCT) calculations on the O3(X(1)A') potential energy surface (PES) of Babikov et al.
View Article and Find Full Text PDFPhotoionization efficiency spectra of (14)N2, (15)N(14)N, and (15)N2 from 15.5 to 18.9 eV were measured using synchrotron radiation at the Advanced Light Source at Lawrence Berkeley National Laboratory with a resolution of 6 meV, and significant changes in peak energies and intensities upon isotopic substitution were observed.
View Article and Find Full Text PDFWe report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in (17)O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.
View Article and Find Full Text PDFThe products and dynamics of the reactions (18)O((3)P)+NO(2) and (18)O((1)D)+NO(2) have been investigated using crossed beams and provide new constraints on the structures and lifetimes of the reactive nitrogen trioxide intermediates formed in collisions of O((3)P) and O((1)D) with NO(2). For each reaction, two product channels are observed - isotope exchange and O(2)+NO formation. From the measured product signal intensities at collision energies of ∼6 to 9.
View Article and Find Full Text PDFThe stratospheric CO(2) oxygen isotope budget is thought to be governed primarily by the O((1)D)+CO(2) isotope exchange reaction. However, there is increasing evidence that other important physical processes may be occurring that standard isotopic tools have been unable to identify. Measuring the distribution of the exceedingly rare CO(2) isotopologue (16)O(13)C(18)O, in concert with (18)O and (17)O abundances, provides sensitivities to these additional processes and, thus, is a valuable test of current models.
View Article and Find Full Text PDFThe recombination of oxygen atoms with oxygen molecules to form ozone exhibits several strange chemical characteristics, including unusually large differences in formation rate coefficients when different isotopes of oxygen participate. Purely statistical chemical reaction rate theories cannot describe these isotope effects, suggesting that reaction dynamics must play an important role. We investigated the dynamics of the 18O + 32O2 --> O3(*) --> 16O + 34O2 isotope exchange reaction (which proceeds on the same potential energy surface as ozone formation) using crossed atomic and molecular beams at a collision energy of 7.
View Article and Find Full Text PDFIn addition to the anomalous (17)O and (18)O isotope effects in the three-body ozone formation reaction O+O(2)+M, isotope effects in the destruction of ozone by photolysis may also play a role in determining the isotopic composition of ozone and other trace gases in the atmosphere. While previous experiments on ozone photolysis at 254 nm were interpreted as evidence for preferential loss of light ozone that is anomalous (or "non-mass-dependent"), recent semiempirical theoretical calculations predicted a preferential loss of heavy ozone at that wavelength that is mass dependent. Through photochemical modeling results presented here, we resolve this apparent contradiction between experiment and theory.
View Article and Find Full Text PDFA mass spectrometric method to determine the absolute intramolecular (position-dependent) nitrogen isotope ratios of nitrous oxide (N2O) has been developed. It is based on the addition of different amounts of doubly labeled 15N2O to an N2O sample of the isotope ratio mass spectrometer reference gas, and subsequent measurement of the relative ion current ratios of species with mass 30, 31, 44, 45, and 46. All relevant quantities are measured by isotope ratio mass spectrometers, which means that the machines' inherent high precision of the order of 10(-5) can be fully exploited.
View Article and Find Full Text PDFMolecular hydrogen (H2) is the second most abundant trace gas in the atmosphere after methane (CH4). In the troposphere, the D/H ratio of H2 is enriched by 120 per thousand relative to the world's oceans. This cannot be explained by the sources of H2 for which the D/H ratio has been measured to date (for example, fossil fuels and biomass burning).
View Article and Find Full Text PDF