Focused ultrasound combined with intravenously injected microbubbles (FUS) is known to non-invasively, locally, and transiently increase the permeability of the blood-brain barrier (BBB). A promising approach for non-invasive gene delivery to the brain is to administer recombinant adeno-associated viruses (AAVs) intravenously and allow them to cross the BBB at precise FUS-targeted brain regions. FUS-AAV delivery has been achieved in animal models; however, the key elements influencing, guiding, and monitoring the success of FUS-AAV delivery to the brain remain largely unknown.
View Article and Find Full Text PDFEarly degeneration of basal forebrain cholinergic neurons contributes substantially to cognitive decline in Alzheimer's disease. Evidence from preclinical models of neuronal injury and aging support a pivotal role for nerve growth factor (NGF) in neuroprotection, resilience, and cognitive function. However, whether NGF can provide therapeutic benefit in the presence of Alzheimer's disease-related pathologies still unresolved.
View Article and Find Full Text PDFThe accumulation of aggregated alpha-synuclein (α-syn) in Parkinson's disease, dementia with Lewy bodies and multiple system atrophy is thought to involve a common prion-like mechanism, whereby misfolded α-syn provides a conformational template for further accumulation of pathological α-syn. We tested whether silencing α-syn gene expression could reduce native non-aggregated α-syn substrate and thereby disrupt the propagation of pathological α-syn initiated by seeding with synucleinopathy-affected mouse brain homogenates. Unilateral intracerebral injections of adeno-associated virus serotype-1 encoding microRNA targeting the α-syn gene reduced the extent and severity of both the α-syn pathology and motor deficits.
View Article and Find Full Text PDFBasal forebrain cholinergic neurons (BFCNs) regulate circuit dynamics underlying cognitive processing, including attention, memory, and cognitive flexibility. In Alzheimer's disease and related neurodegenerative conditions, the degeneration of BFCNs has long been considered a key player in cognitive decline. The cholinergic system thus represents a key therapeutic target.
View Article and Find Full Text PDFCell therapy offers significant promise for traumatic spinal cord injury (SCI), which despite many medical advances, has limited treatment strategies. Able to address the multifactorial and dynamic pathophysiology of SCI, cells present various advantages over standard pharmacological approaches. However, the use of live cells is also severely hampered by logistical and practical considerations.
View Article and Find Full Text PDFLocalized vascular disruption after traumatic spinal cord injury (SCI) triggers a cascade of secondary events, including inflammation, gliosis, and scarring, that can further impact recovery. In addition to immunomodulatory and neurotrophic properties, mesenchymal stromal cells (MSCs) possess pericytic characteristics. These features make MSCs an ideal candidate for acute cell therapy targeting vascular disruption, which could reduce the severity of secondary injury, enhance tissue preservation and repair, and ultimately promote functional recovery.
View Article and Find Full Text PDFRecombinant adeno-associated viral (rAAV) vectors are a promising tool for therapeutic gene delivery to the brain. However, the delivery of rAAVs across the blood-brain barrier (BBB) and entry into the brain remains a major challenge for rAAV-based gene therapy. To circumvent this limitation, transcranial MRI-guided focused ultrasound (MRIgFUS) combined with intravenously injected microbubbles has been used to transiently and reversibly increase BBB permeability in targeted brain regions.
View Article and Find Full Text PDFPhysical activity plays an essential role in maintaining a healthy body, yet it also provides unique benefits for the vascular and cellular systems that sustain a healthy brain. While the benefit of exercise has been observed in humans of all ages, the availability of preclinical models has permitted systematic investigations into the mechanisms by which exercise supports and protects the brain. Over the past twenty-five years, rodent models have shown that increased physical activity elevates neurotrophic factors in the hippocampal and cortical areas, facilitating neurotransmission throughout the brain.
View Article and Find Full Text PDFBackground: The characteristic progression of Lewy pathology in Parkinson's disease likely involves intercellular exchange and the accumulation of misfolded α-synuclein amplified by a prion-like self-templating mechanism. Silencing of the α-synuclein gene could provide long-lasting disease-modifying benefits by reducing the requisite substrate for the spreading aggregation.
Objectives: As a result of the poor penetration of viral vectors across the blood-brain barrier, gene therapy for central nervous system disorders requires direct injections into the affected brain regions, and invasiveness is further increased by the need for bilateral delivery to multiple brain regions.
Evidence suggests that physical exercise can serve as a preventive strategy against Alzheimer's disease (AD). In contrast, much less is known about the impact of exercise when it is introduced after cognitive deficits are established. Using the TgCRND8 mouse model of amyloidosis, we compared the effects of exercise as an intervention strategy aimed at altering disease progression.
View Article and Find Full Text PDFNoninvasive, targeted drug delivery to the brain can be achieved using transcranial focused ultrasound (FUS), which transiently increases the permeability of the blood-brain barrier (BBB) for localized delivery of therapeutics from the blood to the brain. Previously, we have demonstrated that FUS can deliver intravenously-administered antibodies to the brain of a mouse model of Alzheimer's disease (AD) and rapidly reduce plaques composed of amyloid-β peptides (Aβ). Here, we investigated two potential effects of transcranial FUS itself that could contribute to a reduction of plaque pathology, namely the delivery of endogenous antibodies to the brain and the activation of glial cells.
View Article and Find Full Text PDF