Publications by authors named "Kristian Rink"

The purpose of this study is to improve direct phosphorus (P) MR imaging. Therefore, 3D density-adapted radially-sampled balanced steady-state free precession (bSSFP) sequences were developed and an iterative approach exploiting additional anatomical information from hydrogen (H) data was evaluated. Three healthy volunteers were examined at B=7T in order to obtain the spatial distribution of the phosphocreatine (PCr) intensities in the human calf muscle with a nominal isotropic resolution of 10mm in an acquisition time of 10min.

View Article and Find Full Text PDF

Purpose: To evaluate the volume and changes of human brown adipose tissue (BAT) in vivo following exposure to cold using magnetic resonance imaging (MRI).

Materials And Methods: The clavicular region of 10 healthy volunteers was examined with a 3T MRI system. One volunteer participated twice.

View Article and Find Full Text PDF

The purpose of this study is to develop nuclear-Overhauser-enhanced (NOE) [(1)H]-(31)P magnetic resonance imaging (MRI) based on 3D fully-balanced steady-state free precession (fbSSFP). Therefore, two implementations of a 3D fbSSFP sequence are compared using frequency-selective excitation (FreqSel) and multipoint-Dixon (MP-Dixon). (31)P-containing model solutions and four healthy volunteers were examined at field strengths of B0=3T and 7T.

View Article and Find Full Text PDF

Purpose: Pulse pileup occurring at high x-ray fluxes can severely degrade the energy resolution provided by a photon counting detector, which can represent a problem in spectroscopic CT when performing quantitative material discrimination tasks. As the effects of pileup can be most easily seen as a degradation of a detector's count rate linearity at high fluxes, it has been proposed previously to quantify and correct these nonlinearities. While this strategy has been applied successfully to materials without K-edges, it is currently unknown if this still prevails when using medical contrast agents.

View Article and Find Full Text PDF

Spectroscopic x-ray imaging by means of photon counting detectors has received growing interest during the past years. Critical to the image quality of such devices is their pixel pitch and the sensor material employed. This paper describes the imaging properties of Medipix2 MXR multi-chip assemblies bump bonded to 1 mm thick CdTe sensors.

View Article and Find Full Text PDF