The evolution of dark human skin colors in tropical areas is possibly related to photoprotection of folates. However, natural folates absorb mainly UVB radiation, and too little UVB can penetrate down to folates in dermal vessels to cause serious damage. However, endogenous photosensitizers, like riboflavin and uroporphyrin, absorbing UVA and visible light, can cause photosensitization of folates.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2008
Background: Photodynamic therapy (PDT) induces physiological changes in human skin, but details and kinetics are not known.
Methods: Changes in human skin induced by PDT with red light in the presence of topically applied cream with the hexyl aminolevulinate (HAL) were investigated in the skin of five healthy volunteers. In addition to testing the effects of HAL-PDT three control studies were performed on the volunteers: (A) the HAL containing cream was applied to the skin without light exposure; (B) the cream without HAL was applied to the skin; (C) the skin was exposed to light in the absence of the cream.
J Environ Pathol Toxicol Oncol
January 2008
Melanotic melanomas have a poor response to photodynamic therapy (PDT). The reason for this is that melanin absorbs light over the entire wavelength region used for PDT (400-750 nm). Photobleaching of melanin is an approach to overcome this obstacle.
View Article and Find Full Text PDFAlthough 5-aminolevulinic acid, ALA, and its derivatives, have been widely studied and applied in clinical photodynamic therapy (PDT), there is still a lack of reliable and non-invasive methods and technologies to evaluate physiological parameters of relevance for the therapy, such as erythema, melanogenesis, and oxygen level. We have investigated the kinetics of these parameters in human skin in vivo during and after PDT with the hexyl ester of ALA, ALA-Hex. Furthermore, the depth of photosensitizer (protoporphyrin IX, PpIX) production after different application times was investigated.
View Article and Find Full Text PDFOver the last three decades photodynamic therapy (PDT) has been developed to a useful clinical tool, a viable alternative in the treatment of cancer and other diseases. Several disciplines have contributed to this development: chemistry in the development of new photosensitizing agents, biology in the elucidation of cellular processes involved in PDT, pharmacology and physiology in identifying the mechanisms of distribution of photosensitizers in an organism, and, last but not least, physics in the development of better light sources, dosimetric concepts and construction of imaging devices, optical sensors and spectroscopic methods for determining sensitizer concentrations in different tissues. Physics and biophysics have also helped to focus on the role of pH for sensitizer accumulation, dose rate effects, oxygen depletion, temperature, and optical penetration of light of different wavelengths into various types of tissue.
View Article and Find Full Text PDF