Publications by authors named "Kristian P Nielsen"

The evolution of dark human skin colors in tropical areas is possibly related to photoprotection of folates. However, natural folates absorb mainly UVB radiation, and too little UVB can penetrate down to folates in dermal vessels to cause serious damage. However, endogenous photosensitizers, like riboflavin and uroporphyrin, absorbing UVA and visible light, can cause photosensitization of folates.

View Article and Find Full Text PDF

Objective: To evaluate the potential of a novel imaging technology, optical transfer diagnosis (OTD), for differentiation of benign from malignant pigmented melanocytic lesions.

Design: Patients with pigmented lesions suspicious for melanoma were referred for OTD. After scanning, lesions were biopsied for histopathologic examination, each by two separate dermatopathologists.

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) induces physiological changes in human skin, but details and kinetics are not known.

Methods: Changes in human skin induced by PDT with red light in the presence of topically applied cream with the hexyl aminolevulinate (HAL) were investigated in the skin of five healthy volunteers. In addition to testing the effects of HAL-PDT three control studies were performed on the volunteers: (A) the HAL containing cream was applied to the skin without light exposure; (B) the cream without HAL was applied to the skin; (C) the skin was exposed to light in the absence of the cream.

View Article and Find Full Text PDF

Melanotic melanomas have a poor response to photodynamic therapy (PDT). The reason for this is that melanin absorbs light over the entire wavelength region used for PDT (400-750 nm). Photobleaching of melanin is an approach to overcome this obstacle.

View Article and Find Full Text PDF

We perform a detailed comparison study of Monte Carlo (MC) simulations and discrete-ordinate radiative-transfer (DISORT) calculations of spectral radiances in a 1D coupled air-tissue (CAT) system consisting of horizontal plane-parallel layers. The MC and DISORT models have the same physical basis, including coupling between the air and the tissue, and we use the same air and tissue input parameters for both codes. We find excellent agreement between radiances obtained with the two codes, both above and in the tissue.

View Article and Find Full Text PDF

Although 5-aminolevulinic acid, ALA, and its derivatives, have been widely studied and applied in clinical photodynamic therapy (PDT), there is still a lack of reliable and non-invasive methods and technologies to evaluate physiological parameters of relevance for the therapy, such as erythema, melanogenesis, and oxygen level. We have investigated the kinetics of these parameters in human skin in vivo during and after PDT with the hexyl ester of ALA, ALA-Hex. Furthermore, the depth of photosensitizer (protoporphyrin IX, PpIX) production after different application times was investigated.

View Article and Find Full Text PDF

Over the last three decades photodynamic therapy (PDT) has been developed to a useful clinical tool, a viable alternative in the treatment of cancer and other diseases. Several disciplines have contributed to this development: chemistry in the development of new photosensitizing agents, biology in the elucidation of cellular processes involved in PDT, pharmacology and physiology in identifying the mechanisms of distribution of photosensitizers in an organism, and, last but not least, physics in the development of better light sources, dosimetric concepts and construction of imaging devices, optical sensors and spectroscopic methods for determining sensitizer concentrations in different tissues. Physics and biophysics have also helped to focus on the role of pH for sensitizer accumulation, dose rate effects, oxygen depletion, temperature, and optical penetration of light of different wavelengths into various types of tissue.

View Article and Find Full Text PDF

Melanin pigments are important regulators for the evolution of essential functions of human skin. The concentration of melanin, as well as its depth distribution, is strongly affected by ultraviolet radiation. In un-tanned skin, melanin pigments are found only in the basal layer of the epidermis, while in tanned skin it is distributed throughout the epidermis.

View Article and Find Full Text PDF

We have investigated the role of tissue oxygenation on light penetration into tissue at different wavelengths. As a field of application we have chosen aminolevulinic acid-photodynamic therapy (ALA-PDT). To calculate efficiency spectra of PDT on human skin one needs to know the excitation spectrum of the photosensitizer of interest and the relative fluence rate as a function of depth in the tissue.

View Article and Find Full Text PDF

We present measurements of reflectance spectra from human skin in vivo in the spectral range from 250 to 700 nm. These measurements show that the reflectance from strongly pigmented skin is higher than that from weakly pigmented skin at wavelengths shorter than approximately 300 nm. We simulate the measured results using a new radiative transfer model developed to study light propagation in skin tissue.

View Article and Find Full Text PDF