Publications by authors named "Kristian Odfalk"

Dysfunction of the endosomal-lysosomal network is a notable feature of Alzheimer's disease (AD) pathology. Dysfunctional endo-lysosomal vacuoles accumulate in dystrophic neurites surrounding amyloid β (Aβ) plaques and may be involved in the pathogenesis and progression of Aβ aggregates. Trafficking and thus maturation of these dysfunctional vacuoles is disrupted in the vicinity of Aβ plaques.

View Article and Find Full Text PDF

Terminal sialic acid residues are present on most glycoproteins and glycolipids, but levels of sialylation are known to change in the brain throughout the lifespan as well as during disease. Sialic acids are important for numerous cellular processes including cell adhesion, neurodevelopment, and immune regulation as well as pathogen invasion into host cells. Neuraminidase enzymes, also known as sialidases, are responsible for removal of terminal sialic acids in a process known as desialylation.

View Article and Find Full Text PDF

Epidemiological studies suggest that L-type calcium channel (LTCC) antagonists may reduce the incidence of age-associated neurodegenerative diseases including Alzheimer's disease (AD). However, the neuroprotective mechanism of LTCC antagonists is unknown. Amyloid-β (Aβ) pathology disrupts intracellular calcium signaling, which regulates lysosomes and microglial responses.

View Article and Find Full Text PDF

Aggregation of misfolded microtubule associated protein tau into abnormal intracellular inclusions defines a class of neurodegenerative diseases known as tauopathies. The consistent spatiotemporal progression of tau pathology in Alzheimer's disease (AD) led to the hypothesis that tau aggregates spread in the brain via bioactive tau "seeds" underlying advancing disease course. Recent studies implicate microglia, the resident immune cells of the central nervous system, in both negative and positive regulation of tau pathology.

View Article and Find Full Text PDF

The genetic landscape of diseases associated with changes in bone mineral density (BMD), such as osteoporosis, is only partially understood. Here, we explored data from 3,823 mutant mouse strains for BMD, a measure that is frequently altered in a range of bone pathologies, including osteoporosis. A total of 200 genes were found to significantly affect BMD.

View Article and Find Full Text PDF