Compound-specific stable isotope ratio analysis of oxygen isotopes in inorganic phosphate can be used to study biological phosphorus cycling and the transformation processes controlling the fate of phosphorus. However, methods for extraction of inorganic phosphate from plant tissue for oxygen isotope ratio analysis are not consistent. Further, the purification into solid silver phosphate can be challenging and laborious.
View Article and Find Full Text PDFThis work critically reviews stable isotope fractionation of essential (B, Mg, K, Ca, Fe, Ni, Cu, Zn, Mo), beneficial (Si), and non-essential (Cd, Tl) metals and metalloids in plants. The review (i) provides basic principles and methodologies for non-traditional isotope analyses, (ii) compiles isotope fractionation for uptake and translocation for each element and connects them to physiological processes, and (iii) interlinks knowledge from different elements to identify common and contrasting drivers of isotope fractionation. Different biological and physico-chemical processes drive isotope fractionation in plants.
View Article and Find Full Text PDFThe stable nitrogen isotope ratio δN is used as a marker of dietary protein sources in blood. Crop fertilization strategies affect δN in plant foods. In a double-blinded randomized cross-over dietary intervention trial with 33 participants, we quantified the effect of fertilizer type (conventional: synthetic fertilizer and organic: animal or green manure) on δN in blood plasma.
View Article and Find Full Text PDFLectins are ubiquitous proteins characterized through their ability to bind different types of carbohydrates. It is well known that active lectins from insufficiently prepared legumes can cause adverse human health effects. The objective of this study was to determine the activity of lectins in samples across plant families representing commercially available edible plants, and the feasibility of inactivating lectins through soaking and boiling.
View Article and Find Full Text PDFThe visual deficiency symptoms developing on plants constitute the ultimate manifestation of suboptimal nutrient supply. In classical plant nutrition, these symptoms have been extensively used as a tool to characterise the nutritional status of plants and to optimise fertilisation. Here we expand this concept by bridging the typical deficiency symptoms for each of the six essential macronutrients to their molecular and physiological functionalities in higher plants.
View Article and Find Full Text PDFThe oxygen isotope signature of sulphate (δ O ) is increasingly used to study nutritional fluxes and sulphur transformation processes in a variety of natural environments. However, mechanisms controlling the δ O signature in soil-plant systems are largely unknown. The objective of this study was to determine key factors, which affect δ O values in soil and plants.
View Article and Find Full Text PDFAnalytical methods for authenticity testing of organically grown vegetables are urgently needed. Here we present a novel method for organic authentication based on stable isotope ratio analysis of oxygen in plant-derived sulphate. We combined this method with stable isotope ratio analysis of bulk plant tissue and plant-derived nitrate to discriminate organic and conventional potato, carrot, and cabbage from rigidly controlled long-term field trials and from a case study using retail potatoes.
View Article and Find Full Text PDFBackground And Aims: Retranslocation of iron (Fe) from source tissues enhances plant tolerance to Fe deficiency. Previous work has shown that silicon (Si) can alleviate Fe deficiency by enhancing acquisition and root to shoot translocation of Fe. Here the role of Si in Fe mobilization in older leaves and the subsequent retranslocation of Fe to young leaves of cucumber (Cucumis sativus) plants growing under Fe-limiting conditions was investigated.
View Article and Find Full Text PDFPhosphorus (P) is a finite natural resource and an essential plant macronutrient with major impact on crop productivity and global food security. Here, we demonstrate that time-resolved chlorophyll a fluorescence is a unique tool to monitor bioactive P in plants and can be used to detect latent P deficiency. When plants suffer from P deficiency, the shape of the time-dependent fluorescence transients is altered distinctively, as the so-called I step gradually straightens and eventually disappears.
View Article and Find Full Text PDFFour combinations of two solid organic fertilizers (Monterra Malt and chicken manure) applied before planting and two liquid organic fertilizers (broad bean and Pioner Hi-Fruit/K-Max) given through drip irrigation (fertigation) were compared with inorganic fertilization regarding growth, yield, nutrient concentration, and fruit quality of strawberries. Broad bean fertigation combined with Monterra Malt resulted in a similar fruit yield as inorganic fertilizer and a higher yield than Monterra Malt combined with Pioner; however, total soluble solids, firmness, and titratable acid were improved with Pioner fertigation, although these parameters were more affected by harvest time than the applied fertilizers. The concentrations of most nutrients in fruits and leaves were higher in inorganically fertigated plants.
View Article and Find Full Text PDFWe present a study deploying compound-specific nitrogen and carbon isotope analysis of amino acids to discriminate between organically and conventionally grown plants. We focused on grain samples of common wheat and durum wheat grown using synthetic nitrogen fertilizers, animal manures, or green manures from nitrogen-fixing legumes. The measurement of amino acid δ(15)N and δ(13)C values, after protein hydrolysis and derivatization, was carried out using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).
View Article and Find Full Text PDFThe influence of organic and conventional farming practices on the content of single nutrients in plants is disputed in the scientific literature. Here, large-scale untargeted LC-MS-based metabolomics was used to compare the composition of white cabbage from organic and conventional agriculture, measuring 1,600 compounds. Cabbage was sampled in 2 years from one conventional and two organic farming systems in a rigidly controlled long-term field trial in Denmark.
View Article and Find Full Text PDFThe barley genome encodes a family of 10 metallothioneins (MTs) that have not previously been subject to extensive gene expression profiling. We show here that expression of MT1a, MT2b1, MT2b2 and MT3 in barley leaves increased more than 50-fold during the first 10 d after germination. Concurrently, the root-specific gene MT1b1 was 1000-fold up-regulated.
View Article and Find Full Text PDF· Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. · A combined approach was performed including analyses of apoplastic Fe, reduction-based Fe acquisition and Fe-mobilizing compounds in roots along with the expression of related genes.
View Article and Find Full Text PDFAgricultural methods may affect the nutritional composition of plants and cause complex changes in the food matrix. Whether this affects the dietary absorption of minerals that are important for maintaining health thorough life remains unclear. We compared the effects of organic and conventional diets on intake and absorption of zinc and copper in men.
View Article and Find Full Text PDFThe multielemental composition of organic and conventional winter wheat, spring barley, faba bean, and potato was analyzed with inductively coupled plasma-optical emission spectrometry (ICP-OES) and -mass spectrometry (ICP-MS). The crops were cultivated in two years at three geographically different field locations, each accommodating one conventional and two organic cropping systems. The conventional system produced the highest harvest yields for all crops except the nitrogen-fixing faba bean, whereas the dry matter content of each crop was similar across systems.
View Article and Find Full Text PDFTwo glucanotransferases, disproportionating enzyme 1 (StDPE1) and disproportionating enzyme 2 (StDPE2), were repressed using RNA interference technology in potato, leading to plants repressed in either isoform individually, or both simultaneously. This is the first detailed report of their combined repression. Plants lacking StDPE1 accumulated slightly more starch in their leaves than control plants and high levels of maltotriose, while those lacking StDPE2 contained maltose and large amounts of starch.
View Article and Find Full Text PDFA rapid and sensitive analytical method for quantification of polyacetylenes in carrot roots was developed. The traditional extraction method (stirring) was compared to a new ultrasonic liquid processor (ULP)-based methodology using high-performance liquid chromatography-ultraviolet (HPLC-UV) and mass spectrometry (MS) for identification and quantification of three polyacetylenes. ULP was superior because a significant reduction in extraction time and improved extraction efficiencies were obtained.
View Article and Find Full Text PDFBackground: Quantitative multi-elemental analysis by inductively coupled plasma (ICP) spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low.
View Article and Find Full Text PDFThe increasing prevalence of iron (Fe) and zinc (Zn) deficiencies in human populations worldwide has stressed the need for more information about the distribution and chemical speciation of these elements in cereal products. In order to investigate these aspects, barley grains were fractionated into awns, embryo, bran and endosperm and analysed for Fe and Zn. Simultaneously, phosphorus (P) and sulfur (S) were determined since these elements are major constituents of phytic acid and proteins, respectively, compounds which are potentially involved in Fe and Zn binding.
View Article and Find Full Text PDFBarley (Hordeum vulgare) genotypes display a marked difference in their ability to tolerate growth at low manganese (Mn) concentrations, a phenomenon designated as differential Mn efficiency. Induction of Mn deficiency in two genotypes differing in Mn efficiency led to a decline in the quantum yield efficiency for both, although faster in the Mn-inefficient genotype. Leaf tissue and thylakoid Mn concentrations were reduced under Mn deficiency, but no difference between genotypes was observed and no visual Mn deficiency symptoms were developed.
View Article and Find Full Text PDFTo investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low nM range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements revealed that the quantum yield efficiency of PSII (F(v)/F(m)) was reduced from 0.83 in Mn-sufficient control plants to below 0.
View Article and Find Full Text PDFLoss of aquaporin TIP1;1 in Arabidopsis has been suggested to result in early senescence and plant death. This was based on the fact that a partial reduction of TIP1;1 by RNA interference (RNAi) led to gradual phenotypes, ranging from indistinguishable from wild type to lethality, depending on the degree of downregulation of the target messenger, and displaying pleiotropic effects in primary metabolism and cell signalling. A hypothesis was put forward to suggest that TIP1;1, apart from its transport function, may play an essential role in vesicle routing.
View Article and Find Full Text PDF