Monoclonal antibodies (mAbs) are valuable biological molecules, serving for many applications. Therefore, it is advantageous to know the interaction pattern between antibodies and their antigens. Regions on the antigen which are recognized by the antibodies are called epitopes, and the respective molecular counterpart of the epitope on the mAbs is called paratope.
View Article and Find Full Text PDFThe antigen-binding ability of each antibody clone selected by phage display is usually initially ranked by a screening ELISA using monovalent scFv antibody fragments. Further characterization often requires bivalent antibody molecules such as IgG or scFv-Fc fusions. To produce these, the V region encoding genes of selected hits have to be cloned into a mammalian expression vector and analyzed as a bivalent molecule, requiring a laborious cloning procedure.
View Article and Find Full Text PDFThe most common and robust in vitro technology to generate monoclonal human antibodies is phage display. This technology is a widely used and powerful key technology for recombinant antibody selection. Phage display-derived antibodies are used as research tools, in diagnostic assays, and by 2022, 14 phage display-derived therapeutic antibodies were approved.
View Article and Find Full Text PDFAdoptive transfer of antigen-specific regulatory T cells (Tregs) has shown promising results in the treatment of autoimmune diseases; however, the use of polyspecific Tregs has limited effects. However, obtaining a sufficient number of antigen-specific Tregs from patients with autoimmune disorders remains challenging. Chimeric antigen receptors (CARs) provide an alternative source of T cells for novel immunotherapies that redirect T cells independently of the MHC.
View Article and Find Full Text PDFFood allergies are a major health issue worldwide. Modern breeding techniques such as genome editing via CRISPR/Cas9 have the potential to mitigate this by targeting allergens in plants. This study addressed the major allergen Bra j I, a seed storage protein of the 2S albumin class, in the allotetraploid brown mustard (Brassica juncea).
View Article and Find Full Text PDFAntibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases.
View Article and Find Full Text PDFThe novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC in a plaque-based live SARS-CoV-2 neutralization assay.
View Article and Find Full Text PDFCOVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1.
View Article and Find Full Text PDFAntibodies are essential tools for therapy and diagnostics. Yet, production remains expensive as it is mostly done in mammalian expression systems. As most therapeutic IgG require mammalian glycosylation to interact with the human immune system, other expression systems are rarely used for production.
View Article and Find Full Text PDFAntibody phage display is the most used in vitro technology to generate recombinant, mainly human, antibodies as tools for research, for diagnostic assays, and for therapeutics. Up to now (autumn 2018), eleven FDA/EMA-approved therapeutic antibodies were developed using phage display, including the world best-selling antibody adalimumab.A key to generate successfully human antibodies in vitro is the choice of the most appropriate antibody selection method, for our goal.
View Article and Find Full Text PDFAntibodies are widely used in a large variety of research applications, for diagnostics and therapy of numerous diseases, primarily cancer and autoimmune diseases. Antibodies are binding specifically to target structures (antigens). The antigen-binding properties are not only dependent on the antibody sequence, but also on the discrete antigen region recognized by the antibody (epitope).
View Article and Find Full Text PDF