There has been a long debate about the possibility of multiple contemporaneous species of Australopithecus in both eastern and southern Africa, potentially exhibiting different forms of bipedal locomotion. Here, we describe the previously unreported morphology of the os coxae in the 3.67 Ma Australopithecus prometheus StW 573 from Sterkfontein Member 2, comparing it with variation in ossa coxae in living humans and apes as well as other Plio-Pleistocene hominins.
View Article and Find Full Text PDFThe evolution of the medial longitudinal arch (MLA) is one of the most impactful adaptations in the hominin foot that emerged with bipedalism. When and how it evolved in the human lineage is still unresolved. Complicating the issue, clinical definitions of flatfoot in living Homo sapiens have not reached a consensus.
View Article and Find Full Text PDFObjectives: This study investigates patterns of bone functional adaptations in extant apes through comparing hindlimb to forelimb bone rigidity ratios in groups with varying levels of arboreality.
Materials And Methods: Using CT scans, bone rigidity (J) was calculated at three regions of interest (ROI) along femoral and humeral diaphyses in Homo, Pongo, Pan, and Gorilla with further comparisons made between species and subspecies divisions within Pan and Gorilla.
Results: Consistent with previous work on extant hominoids, species exhibited differences in midshaft femoral to humeral (F/H) rigidity ratios.
The frontal sinuses are cavities inside the frontal bone located at the junction between the face and the cranial vault and close to the brain. Despite a long history of study, understanding of their origin and variation through evolution is limited. This work compares most hominin species' holotypes and other key individuals with extant hominids.
View Article and Find Full Text PDFAustralopiths, a group of hominins from the Plio-Pleistocene of Africa, are characterized by derived traits in their crania hypothesized to strengthen the facial skeleton against feeding loads and increase the efficiency of bite force production. The crania of robust australopiths are further thought to be stronger and more efficient than those of gracile australopiths. Results of prior mechanical analyses have been broadly consistent with this hypothesis, but here we show that the predictions of the hypothesis with respect to mechanical strength are not met: some gracile australopith crania are as strong as that of a robust australopith, and the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania.
View Article and Find Full Text PDFNeanderthal foot bone proportions and morphology are mostly indistinguishable from those of Homo sapiens, with the exception of several distinct Neanderthal features in the talus. The biomechanical implications of these distinct talar features remain contentious, fueling debate around the adaptive meaning of this distinctiveness. With the aim of clarifying this controversy, we test phylogenetic and behavioral factors as possible contributors, comparing tali of 10 Neanderthals and 81 H.
View Article and Find Full Text PDFLate Middle Pleistocene hominins in Africa displaying key modern morphologies by 315 ka are claimed as the earliest Homo sapiens. Evolutionary relationships among East Asian hominins appear complex due to a growing fossil record of late Middle Pleistocene hominins from the region, reflecting mosaic morphologies that contribute to a lack of consensus on when and how the transition to modern humans transpired. Newly discovered 300 ka hominin fossils from Hualongdong, China, provide further evidence to clarify these relationships in the region.
View Article and Find Full Text PDFThe StW 573 skeleton of Australopithecus prometheus from Sterkfontein Member 2 is some 93% complete and thus by far the most complete member of that genus yet found. Firmly dated at 3.67 Ma, it is one of the earliest specimens of its genus.
View Article and Find Full Text PDFThe Border Cave 3 (BC3) infant skeleton has been understudied, despite its importance as an example of a well-preserved and fairly complete immature skeleton of early Homo sapiens which potentially provides a rare window into various aspects of ontogenetic development, including locomotor activity (e.g., timing of gait events).
View Article and Find Full Text PDFThe ca. 3.67 Ma adult skeleton known as 'Little Foot' (StW 573), recovered from Sterkfontein Member 2 breccia in the Silberberg Grotto, is remarkable for its morphology and completeness.
View Article and Find Full Text PDFObjectives: Variation in human trabecular bone morphology can be linked to habitual behavior, but it is difficult to investigate in vivo due to the radiation required at high resolution. Consequently, functional interpretations of trabecular morphology remain inferential. Here we introduce a method to link low- and high-resolution CT data from dry and fresh bone, enabling bone functional adaptation to be studied in vivo and results compared to the fossil and archaeological record.
View Article and Find Full Text PDFObjectives: Variation in trabecular and cortical bone properties is often used to infer habitual behavior in the past. However, the structures of both types of bone are rarely considered together and may even contradict each other in functional interpretations. We examine trabecular and cortical bone properties in various athletes and sedentary controls to clarify the associations between combinations of cortical and trabecular bone properties and various loading modalities.
View Article and Find Full Text PDFObjectives: Aims of the study are to initially describe and comparatively evaluate the morphology of the new Zhaoguo M1 upper limb remains, and contextualize upper limb functional adaptations among those of other worldwide Upper Paleolithic (UP) humans to make inferences about subsistence-related activity patterns in southwestern China at the Pleistocene-Holocene boundary.
Materials And Methods: The preserved Zhaoguo M1 skeletal remains include paired humeri, ulnae, and radii, among others. These specimens were scanned using micro-computed tomography to evaluate internal structural properties, while external osteometric dimensions of the Zhaoguo M1 upper limb elements also were acquired.
The adoption of bipedalism is a key benchmark in human evolution that has impacted talar morphology. Here, we investigate talar morphological variability in extinct and extant hominins using a 3D geometric morphometric approach. The evolutionary timing and appearance of modern human-like features and their contributions to bipedal locomotion were evaluated on the talus as a whole, each articular facet separately, and multiple combinations of facets.
View Article and Find Full Text PDFFunctional morphology of the atlas reflects multiple aspects of an organism's biology. More specifically, its shape indicates patterns of head mobility, while the size of its vascular foramina reflects blood flow to the brain. Anatomy and function of the early hominin atlas, and thus, its evolutionary history, are poorly documented because of a paucity of fossilized material.
View Article and Find Full Text PDFObjectives: This study examines long bone diaphyseal rigidity and shape of hunter-gatherers at Roonka to make inferences about subsistence strategies and mobility of inhabitants of semi-arid southeastern Australia. Roonka is a cemetery site adjacent to the Lower Murray River, which contains over 200 individuals buried throughout the Holocene. Archaeological evidence indicates that populations living near this river corridor employed mobile, risk averse foraging strategies.
View Article and Find Full Text PDFObjectives: The primate talus is known to have a shape that varies according to differences in locomotion and substrate use. While the modern human talus is morphologically specialized for bipedal walking, relatively little is known on how its morphology varies in relation to cultural and environmental differences across time. Here we compare tali of modern human populations with different subsistence economies and lifestyles to explore how cultural practices and environmental factors influence external talar shape.
View Article and Find Full Text PDFDue to its completeness, the A.L. 288-1 ('Lucy') skeleton has long served as the archetypal bipedal Australopithecus.
View Article and Find Full Text PDFBecause of its exceptional degree of preservation and its geological age of ∼3.67 Ma, StW 573 makes an invaluable contribution to our understanding of early hominin evolution and paleobiology. The morphology of the bony labyrinth has the potential to provide information about extinct primate taxonomic diversity, phylogenetic relationships and locomotor behaviour.
View Article and Find Full Text PDFOne of the most crucial debates in human paleoneurology concerns the timing and mode of the emergence of the derived cerebral features in the hominin fossil record. Given its exceptional degree of preservation and geological age (i.e.
View Article and Find Full Text PDFObjective: This project investigates trabecular bone structural variation in the proximal humerus and femur of hunter-gatherer, mixed-strategy agricultural, medieval, and human groups to address three questions: (a) What is the extent of trabecular bone structural variation in the humerus and femur between populations with different inferred activity levels? (b) How does variation in the proximal humerus relate to variation in the proximal femur? (c) Are trabecular bone microstructural variables sexually dimorphic?
Methods: The proximal humerus and femur of 73 adults from five human groups with distinct subsistence strategies were scanned using a micro-computed tomography system. Centralized volumes of interest within the humeral and femoral heads were extracted and analyzed to quantify bone volume fraction, trabecular thickness, trabecular separation, connectivity density, degree of anisotropy, and bone surface density.
Results: In the humerus and femur, groups with the highest inferred activity levels have higher bone volume fraction and trabecular thickness, and lower bone surface density than those with lower inferred activity levels.
Dental root fractures are rarely documented in past human populations, but when they are observed, diagnosing ante-mortem events as causal factors can be difficult due to postmortem alteration. Can high resolution X-ray computed tomography (CT) improve our ability to diagnose if a dental fracture was caused ante- or post-mortem? To test this, a case study of two individuals with previously diagnosed dental root fractures were re-examined with high resolution CT to confirm or refute the original diagnoses. For individual 4170, use of high resolution CT supported the original diagnosis of an ante-mortem root fracture on the right mandibular central incisor that was made based on planar X-ray.
View Article and Find Full Text PDF