Publications by authors named "Kristiaan D'Aout"

Infant carrying and more generally load carrying may impact bipedal locomotion and thus the energy cost of the daily activities, in living people but also in our ancestors. In order to improve our knowledge of infant carrying strategies we investigate the biomechanics of infant carrying in a non-mechanised group. The Qashqai are nomadic people who still carry loads and infants habitually without any daily assistance in varied natural environments.

View Article and Find Full Text PDF

Our current understanding of human gait is mostly based on studies using hard, level surfaces in a laboratory environment. However, humans navigate a wide range of different substrates every day, which incur varied demands on stability and efficiency. Several studies have shown that when walking on natural compliant substrates there is an increase in energy expenditure.

View Article and Find Full Text PDF

We investigated how baboons transition from quadrupedal to bipedal walking without any significant interruption in their forward movement (i.e. transition 'on the fly').

View Article and Find Full Text PDF

Walking on compliant substrates requires more energy than walking on hard substrates but the biomechanical factors that contribute to this increase are debated. Previous studies suggest various causative mechanical factors, including disruption to pendular energy recovery, increased muscle work, decreased muscle efficiency and increased gait variability. We test each of these hypotheses simultaneously by collecting a large kinematic and kinetic dataset of human walking on foams of differing thickness.

View Article and Find Full Text PDF

Background: Knee joint injuries, common in athletes, have a high risk of developing post-traumatic osteoarthritis (PTOA). Ligaments, matrix-rich connective tissues, play important mechanical functions stabilising the knee joint, and yet their role post-trauma is not understood. Recent studies have shown that ligament extracellular matrix structure is compromised in the early stages of spontaneous osteoarthritis (OA) and PTOA, but it remains unclear how ligament matrix pathology affects ligament mechanical function.

View Article and Find Full Text PDF

The human foot is uniquely adapted to bipedal locomotion and has a deformable arch of variable stiffness. Intrinsic foot muscles regulate arch deformation, making them important for foot function. In this study we explore the hypothesis that normal daily activity in minimal footwear, which provides little or no support, increases foot muscle strength.

View Article and Find Full Text PDF

Interspecies differences in locomotor efficiency have been extensively researched, but within-species variation in the metabolic cost of walking and its underlying causes have received much less attention. This is somewhat surprising given the importance of walking energetics to natural selection, and the fact that the mechanical efficiency of striding bipedalism in modern humans is thought to be related in some part to the unique morphology of the human foot. Previous studies of human running have linked specific anatomical traits in the foot to variations in locomotor energetics to provide insight into form-function relationships in human evolution.

View Article and Find Full Text PDF

Although many studies relating stature to foot length have been carried out, the relationship between foot size and body mass remains poorly understood. Here we investigate this relationship in 193 adult and 50 juvenile habitually unshod/minimally shod individuals from five different populations-Machiguenga, Daasanach, Pumé, Hadzabe, and Samoans-varying greatly in body size and shape. Body mass is highly correlated with foot size, and can be predicted from foot area (maximum length × breadth) in the combined sample with an average error of about 10%.

View Article and Find Full Text PDF
Article Synopsis
  • After a stroke, many people can lose part of their vision, which is called homonymous visual field defects; this affects nearly 30% of people who have damage in certain parts of their brain.
  • Researchers looked at different studies to find out how movements of the eyes, head, and body change for people who have this type of vision loss after a stroke.
  • They found that people with this vision loss behave differently when looking around, like spending more time looking at certain areas and moving their eyes differently compared to people without vision loss.
View Article and Find Full Text PDF

Postural and walking instabilities contribute to falls in older adults. Given that shoes affect human locomotor stability and that visual, cognitive and somatosensory systems deteriorate during aging, we aimed to: (1) compare the effects of footwear type on stability and mobility in persons with a history of falls, and (2) determine whether the effect of footwear type on stability is altered by the absence of visual input or by an additional cognitive load. Thirty participants performed standing and walking trials in three footwear conditions, i.

View Article and Find Full Text PDF

Musculoskeletal modelling is an important platform on which to study the biomechanics of morphological structures in vertebrates and is widely used in clinical, zoological and palaeontological fields. The popularity of this approach stems from the potential to non-invasively quantify biologically important but difficult-to-measure functional parameters. However, while it is known that model predictions are highly sensitive to input values, it is standard practice to build models by combining musculoskeletal data from different sources resulting in 'generic' models for a given species.

View Article and Find Full Text PDF

Background: As music listening is able to induce self-perceived and physiological signs of relaxation, it might be an interesting tool to induce muscle relaxation in patients with hypertonia. To this date effective non-pharmacological rehabilitation strategies to treat hypertonia in neurologically impaired patients are lacking. Therefore the aim is to investigate the effectiveness of music listening on muscle activity and relaxation.

View Article and Find Full Text PDF

Background: Effects of minimal shoes on stability and physical function in older people are under-researched. No studies have systematically explored effects of a range of minimal footwear features on these factors in older people.

Methods: A within-participant repeated-measures design was used.

View Article and Find Full Text PDF

To investigate the effects of sound-based interventions (SBIs) on biomechanical parameters in stroke patients. PubMed/Medline, Web of Science, the Physiotherapy Evidence Database (PEDro), and the Cochrane Library were searched until September 2019. Studies examining the effect of SBIs on kinematic, kinetic, and electromyographic outcome measures were included.

View Article and Find Full Text PDF

The inertial properties of body segments reflect performance and locomotor habits in primates. While Pan paniscus is generally described as more gracile, lighter in body mass, and as having relatively longer and heavier hindlimbs than Pan troglodytes, both species exhibit very similar patterns of (quadrupedal and bipedal) kinematics, but show slightly different locomotor repertoires. We used a geometric model to estimate the inertial properties for all body segments (i.

View Article and Find Full Text PDF

The well-developed Achilles tendon in humans is generally interpreted as an adaptation for mechanical energy storage and reuse during cyclic locomotion. All other extant great apes have a short tendon and long-fibred triceps surae, which is thought to be beneficial for locomotion in a complex arboreal habitat as this morphology enables a large range of motion. Surprisingly, highly arboreal gibbons show a more human-like triceps surae with a long Achilles tendon.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the form of the pelvis affects walking and climbing in humans and apes, emphasizing the link between anatomy and locomotion.
  • Researchers used 3D morphology and experimental data to show that the shape of the ischium in primates influences their walking efficiency and climbing ability.
  • Findings suggest that early hominins had a unique pelvic structure that allowed for effective bipedal walking without losing climbing skills, differing from both modern humans and apes.
View Article and Find Full Text PDF

We report the occurrence at 0.7 million years (Ma) of an ichnological assemblage at Gombore II-2, which is one of several archaeological sites at Melka Kunture in the upper Awash Valley of Ethiopia, 2000 m asl. Adults and children potentially as young as 12 months old left tracks in a silty substrate on the shore of a body of water where ungulates, as well as other mammals and birds, congregated.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is a major sequela of diabetes mellitus and may have a detrimental effect on the gait of people with this complication. DPN causes a disruption in the body's sensorimotor system and is believed to affect up to 50% of patients with diabetes mellitus, dependent on the duration of diabetes. It has a major effect on morbidity and mortality.

View Article and Find Full Text PDF

The linear dimensions and inertial characteristics of the body are important in locomotion and they change considerably during the ontogeny of animals, including humans. This longitudinal and ontogenetic study has produced the largest dataset to date of segmental morphometrics in a Catarrhini species, the olive baboon. The objectives of the study were to quantify the changes in body linear and inertial dimensions and to explore their (theoretical) mechanical significance for locomotion.

View Article and Find Full Text PDF

Objectives: This study investigates biomechanical implications of walking with indigenous "Kolhapuri" footwear compared to barefoot walking among a population of South Indians.

Materials And Methods: Ten healthy adults from South India walked barefoot and indigenously shod at voluntary speed on an artificial substrate. The experiment was repeated outside, on a natural substrate.

View Article and Find Full Text PDF

Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, and 90°), and horizontal quadrupedal walking is compared between an arboreal and a terrestrial substrate.

View Article and Find Full Text PDF