Purpose: The purpose of this survey study is to compare the experiences of programs and applicants in the MedPhys Match (MPM) in the 2020-21 match cycle with experiences reported from previous match cycles. The 2020-21 match cycle was unique in that recruitment and interviewing were almost exclusively virtual during the COVID-19 pandemic.
Methods: A survey was sent to all applicants and programs registered for the 2020-21 MPM.
Purpose: In 2021, the Canadian Organization of Medical Physicists (COMP) conducted its first equity, diversity, and inclusion Climate Survey. The membership's experiences of inclusion, belonging, professional opportunities, discrimination, microaggressions, racism, and harassment in their professional lives are presented.
Methods And Materials: The ethics-reviewed survey was distributed in English and French to full members of COMP.
Purpose: One of the common challenges in delivering complex healthcare procedures such as radiation oncology is the organization and sharing of information in ways that facilitate workflow and prevent treatment delays. Within the major vendors of Oncology Information Systems (OIS) is a lack of tools and displays to assist in task timing and workflow processes. To address this issue, we developed an electronic whiteboard integrated with a local OIS to track, record, and evaluate time frames associated with clinical radiation oncology treatment planning processes.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
June 2023
Purpose: The American Association of Physicists in Medicine (AAPM) shares the results, conclusions, and recommendations from the initial Equity, Diversity, and Inclusion Climate Survey conducted in 2021.
Methods And Materials: The climate survey targeted medical physicists who are full members of the AAPM and included demographic inquiries and questions intended to assess the working environmental climate in terms of a sense of belonging and inclusion, experiences of discrimination and harassment, and obstacles to participation within the AAPM. The survey invitation was sent to 5,500 members.
Background: Physicians and physicists are expected to contribute to patient safety and quality improvement (QI) in Radiation Oncology (RO), but prior studies suggest that training for this may be inadequate. RO and medical physics (MP) program directors (PDs) were surveyed to better understand the current patient safety/QI training in their residency programs.
Methods: PDs were surveyed via email in January 2017.
J Appl Clin Med Phys
November 2017
Education in patient safety and quality of care is a requirement for radiation oncology residency programs according to accrediting agencies. However, recent surveys indicate that most programs lack a formal program to support this learning. The aim of this report was to address this gap and share experiences with a structured educational program on quality and safety designed specifically for medical physics therapy residencies.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2017
Purpose: The purpose of this survey study is to investigate behaviors in conflict with the ethical standards of the Medical Physics Residency (MedPhys) Match (MPM) process as stated in the MPM rules (a) and with the nondiscrimination regulations of the Equal Employment Opportunity Commission (EEOC) (b), in addition to other behaviors that may in other ways erode the fairness of the system.
Methods: A survey was sent to all applicants and program directors registered for the 2015 and 2016 MPM. Survey questions asked about application, interview, and postinterview experiences, match results, and overall satisfaction with the process.
Monthly QA is recommended to verify the constancy of high-energy electron beams generated for clinical use by linear accelerators. The tolerances are defined as 2%/2 mm in beam penetration according to AAPM task group report 142. The practical implementation is typically achieved by measuring the ratio of readings at two different depths, preferably near the depth of maximum dose and at the depth corresponding to half the dose maximum.
View Article and Find Full Text PDFThe increasing interest in combined positron emission tomography (PET) and computed tomography (CT) to guide lung cancer radiation therapy planning has been well documented. Motion management strategies during treatment simulation PET/CT imaging and treatment delivery have been proposed to improve the precision and accuracy of radiotherapy. In light of these research advances, why has translation of motion-managed PET/CT to clinical radiotherapy been slow and infrequent? Solutions to this problem are as complex as they are numerous, driven by large inter-patient variability in tumor motion trajectories across a highly heterogeneous population.
View Article and Find Full Text PDF