Publications by authors named "Kristi L Budzinski"

Synaptic vesicles are subcellular organelles that are found in the synaptic bouton and are responsible for the propagation of signals between neurons. Synaptic vesicles undergo endo- and exocytosis with the neuronal membrane to load and release neurotransmitters. Here we discuss how we utilize this property to load nanoparticles as a means of probing the interior of synaptic vesicles.

View Article and Find Full Text PDF

Uptake of neurotransmitters into synaptic vesicles is driven by the proton gradient established across the vesicle membrane. The acidification of synaptic vesicles, therefore, is a crucial component of vesicle function. Here we present measurements of acidification rate constants from isolated, single synaptic vesicles.

View Article and Find Full Text PDF

Synaptosomes are intact, isolated nerve terminals that contain the necessary machinery to recycle synaptic vesicles via endocytosis and exocytosis upon stimulation. Here we use this property of synaptosomes to load quantum dots into synaptic vesicles. Vesicles are then isolated from the synaptosomes, providing a method to probe isolated, individual synaptic vesicles where each vesicle contains a single, encapsulated nanoparticle.

View Article and Find Full Text PDF

The size of a synaptic vesicle (SV) is generally thought to be determined by the amount of lipid and membrane protein it contains. Once formed, it is thought to remain constant in size. Using fluorescence correlation spectroscopy and cryogenic electron microscopy, we show that glutamatergic vesicles reversibly increase their size upon filling with glutamate.

View Article and Find Full Text PDF

This Communication reports real-time sizing of nanoparticles in microfluidic systems using confocal correlation spectroscopy (CCS). CCS can be used to measure the size of both fluorescent and nonfluorescent particles at low concentrations ( View Article and Find Full Text PDF