Publications by authors named "Kristen Zuloaga"

Background: About two-thirds of those with Alzheimer's disease (AD) are women, most of whom are post-menopausal. Menopause accelerates dementia risk by increasing the risk for metabolic, cardiovascular, and cerebrovascular diseases. Mid-life metabolic disease (obesity, diabetes/prediabetes) is a well-known risk factor for dementia.

View Article and Find Full Text PDF

Menopause accelerates metabolic dysfunction, including (pre-)diabetes, obesity and visceral adiposity. However, the effects of endocrine vs. chronological aging in this progression are poorly understood.

View Article and Find Full Text PDF

Sepsis-associated encephalopathy (SAE) is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown.

View Article and Find Full Text PDF

Menopause is an endocrine shift leading to increased vulnerability for cognitive impairment and dementia risk factors, in part due to loss of neuroprotective circulating estrogens. Systemic replacement of estrogen post-menopause has limitations, including risk for estrogen-sensitive cancers. A promising therapeutic approach therefore might be to deliver estrogen only to the brain.

View Article and Find Full Text PDF

Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses.

View Article and Find Full Text PDF

Sepsis-associated encephalopathy (SAE) is a common manifestation in septic patients that is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown.

View Article and Find Full Text PDF

Menopause accelerates metabolic dysfunction, including (pre-)diabetes, obesity and visceral adiposity. However, the effects of endocrine vs. chronological aging in this progression are poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Myelinating cells, like Schwann cells and oligodendrocytes, react to mechanical signals from their environment, which is important for their functions in nerve repair and maintenance.
  • Removing YAP and TAZ, proteins that help these cells respond to mechanical cues, disrupts their ability to recognize axons and effectively form or repair myelin in the peripheral nervous system.
  • In the central nervous system, specifically in oligodendrocytes, YAP and TAZ are crucial for the early stages of myelin repair after damage, as they enhance the ability of these cells to proliferate and remyelinate axons.
View Article and Find Full Text PDF

Menopause is a major endocrinological shift that leads to an increased vulnerability to the risk factors for cognitive impairment and dementia. This is thought to be due to the loss of circulating estrogens, which exert many potent neuroprotective effects in the brain. Systemic replacement of estrogen post-menopause has many limitations, including increased risk for estrogen-sensitive cancers.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is notably associated with cognitive decline resulting from impaired function of hippocampal and cortical areas; however, several other domains and corresponding brain regions are affected. One such brain region is the hypothalamus, shown to atrophy and develop amyloid and tau pathology in AD patients. The hypothalamus controls several functions necessary for survival, including energy and glucose homeostasis.

View Article and Find Full Text PDF

Background: The vast majority of women with dementia are post-menopausal. Despite clinical relevance, menopause is underrepresented in rodent models of dementia. Before menopause, women are less likely than men to experience strokes, obesity, and diabetes-known risk factors for vascular contributions to cognitive impairment and dementia (VCID).

View Article and Find Full Text PDF

Background: Damage to the cerebral vasculature can lead to vascular contributions to cognitive impairment and dementia (VCID). A reduction in blood flow to the brain leads to neuropathology, including neuroinflammation and white matter lesions that are a hallmark of VCID. Mid-life metabolic disease (obesity, prediabetes, or diabetes) is a risk factor for VCID which may be sex-dependent (female bias).

View Article and Find Full Text PDF

Introduction: Corticotropin-releasing factor and its primary receptor (CRFR1) are critical regulators of behavioral and neuroendocrine stress responses. CRFR1 has also been associated with stress-related behavioral changes in postpartum mice. Our previous studies indicate dynamic changes in CRFR1 levels and coupling of CRFR1 with tyrosine hydroxylase (TH) and oxytocin (OT) neurons in postpartum mice.

View Article and Find Full Text PDF

Mounting evidence indicates complex interaction between the immune system and the nervous system, challenging the traditional view about the immune privilege of the brain. Innate lymphoid cells (ILCs) and innate-like T cells are unique families of immune cells that functionally mirror traditional T cells but may function via antigen- and T cell antigen receptor (TCR)-independent mechanisms. Recent work indicates that various ILCs and innate-like T cell subsets are present in the brain barrier tissue, where they play important roles in regulating brain barrier integrity, brain homeostasis and cognitive function.

View Article and Find Full Text PDF

Background: Approximately 70% of Alzheimer's disease (AD) patients have co-morbid vascular contributions to cognitive impairment and dementia (VCID); this highly prevalent overlap of dementia subtypes is known as mixed dementia (MxD). AD is more prevalent in women, while VCID is slightly more prevalent in men. Sex differences in risk factors may contribute to sex differences in dementia subtypes.

View Article and Find Full Text PDF

In the adult ventricular-subventricular zone (V-SVZ), neural stem cells (NSCs) give rise to transit-amplifying progenitor (TAP) cells. These progenitors reside in different subniche locations, implying that cell movement must accompany lineage progression, but the dynamic behaviors of adult NSCs and TAPs remain largely unexplored. Here, we performed live time-lapse imaging with computer-based image analysis of young and aged 3D V-SVZ wholemounts from transgenic mice with fluorescently distinguished NSCs and TAP cells.

View Article and Find Full Text PDF

White matter pathologies are critically involved in the etiology of vascular cognitive impairment-dementia (VCID), Alzheimer's disease (AD), and Alzheimer's disease and related diseases (ADRD), and therefore need to be considered a treatable target ( Roseborough A, Hachinski V, Whitehead S. White matter degeneration - a treatable target? Roseborough et al. JAMA Neurol [Internet].

View Article and Find Full Text PDF

Background: The immune pathways in Alzheimer's disease (AD) remain incompletely understood. Our recent study indicates that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the brain barriers of aged mice and that their activation alleviates aging-associated cognitive decline. The regulation and function of ILC2 in AD, however, remain unknown.

View Article and Find Full Text PDF

With age, neural stem cell (NSC) function in the adult ventricular-subventricular zone (V-SVZ) declines, reducing memory and cognitive function in males; however, the impact on females is not well understood. To obtain a global view of how age and sex impact the mouse V-SVZ, we constructed 3D montages after multiplex immunostaining, and used computer-based 3D image analysis to quantify data across the entire niche at 2, 18, and 22 months. We discovered dramatic sex differences in the aging of the V-SVZ niche vasculature, which regulates NSC activity: females showed increased diameter but decreased vessel density with age, while males showed decreased diameter and increased tortuosity and vessel density.

View Article and Find Full Text PDF

Background: Hypothalamic dysfunction occurs early in the clinical course of Alzheimer's disease (AD), likely contributing to disturbances in feeding behavior and metabolic function that are often observed years prior to the onset of cognitive symptoms. Late-life weight loss and low BMI are associated with increased risk of dementia and faster progression of disease. However, high-fat diet and metabolic disease (e.

View Article and Find Full Text PDF

Mid-life metabolic disease (ie, obesity, diabetes, and prediabetes) causes vascular dysfunction and is a risk factor for vascular contributions to cognitive impairment and dementia (VCID), particularly in women. Using middle-aged mice, we modeled metabolic disease (obesity/prediabetes) via chronic high-fat (HF) diet and modeled VCID via unilateral common carotid artery occlusion. VCID impaired spatial memory in both sexes, but episodic-like memory in females only.

View Article and Find Full Text PDF

Androgens affect the cerebral vasculature and may contribute to sex differences in cerebrovascular diseases. Men are at a greater risk for stroke and vascular contributions to cognitive impairment and dementia (VCID) compared to women throughout much of the lifespan. The cerebral vasculature is a target for direct androgen actions, as it expresses several sex steroid receptors and metabolizing enzymes.

View Article and Find Full Text PDF

Despite mounting evidence suggesting the involvement of the immune system in regulating brain function, the specific role of immune and inflammatory cells in neurodegenerative diseases remain poorly understood. In this study, we report that depletion of NK cells, a type of innate lymphocytes, alleviates neuroinflammation, stimulates neurogenesis, and improves cognitive function in a triple-transgenic Alzheimer disease (AD) mouse model. NK cells in the brains of triple-transgenic AD mouse model (3xTg-AD) mice exhibited an enhanced proinflammatory profile.

View Article and Find Full Text PDF

Increasing evidence has challenged the traditional view about the immune privilege of the brain, but the precise roles of immune cells in regulating brain physiology and function remain poorly understood. Here, we report that tissue-resident group 2 innate lymphoid cells (ILC2) accumulate in the choroid plexus of aged brains. ILC2 in the aged brain are long-lived, are relatively resistant to cellular senescence and exhaustion, and are capable of switching between cell cycle dormancy and proliferation.

View Article and Find Full Text PDF

Adult hippocampal neurogenesis (AHN) is suppressed by high-fat (HF) diet and metabolic disease, including obesity and type 2 diabetes. Deficits in AHN may contribute to cognitive decline and increased risk of dementia and mood disorders, which have higher prevalence in women. However, sex differences in the effects of HF diet/metabolic disease on AHN have yet to be thoroughly investigated.

View Article and Find Full Text PDF