Publications by authors named "Kristen S Williams"

Objective: To investigate tyrosine kinase inhibitors (TKI) and gold nanorods (AuNRs) paired with photothermal ablation in a human metastatic clear cell renal cell carcinoma (RCC) mouse model. Nanoparticles have been successful as a platform for targeted drug delivery in the treatment of urological cancers. Likewise, the use of nanoparticles in photothermal tumour ablation, although early in its development, has provided promising results.

View Article and Find Full Text PDF

Anion exchange membranes have substantial potential to be useful in methanol fuel cells due to the viability of non-noble metal electrocatalysts at high pH and increases in the oxidation rate of methanol in alkaline conditions. However, long-term stability of the cationic moiety has been an issue, and imidazoliums have recently attracted attention as candidates for stable cations. The prevailing strategy for increasing the stability of the imidazolium has involved adding sterically hindering groups at the 2 position.

View Article and Find Full Text PDF

Cellulose nanofibrils are biocompatible nanomaterials derived from sustainable natural sources. We report hydrogelation of carboxylated cellulose nanofibrils with divalent or trivalent cations (Ca(2+), Zn(2+), Cu(2+), Al(3+), and Fe(3+)) and subsequent formation of interconnected porous nanofibril networks. The gels were investigated by dynamic viscoelastic measurements.

View Article and Find Full Text PDF

Negative-ion photoelectron spectroscopy and ab initio simulations are used to study the variation in magnetic structure in Mn(x)O(y) (x = 3, 4[semicolon] y = 1, 2) clusters. The ferrimagnetic and antiferromagnetic ground-state structures of Mn(x)O(y) are 0.16-1.

View Article and Find Full Text PDF

We present quantum chemistry simulations of aluminum clusters surrounded by a surface layer of cyclopentadiene-type ligands to evaluate the potential of such complexes as novel fuels or energetic materials. Density functional theory simulations are used to examine the aluminum-ligand bonding and its variation as the size of the aluminum cluster increases. The organometallic bond at the surface layer arises mainly from ligand charge donation into the Al p orbitals balanced with repulsive polarization effects.

View Article and Find Full Text PDF

In this theoretical-experimental approach, we show using ab initio calculations behavior consistent with the activation of 7-dehydrocholesterol, provitamin D(3), as an initial reactant toward ultraviolet-activated reactions of vitamin D(3). We find using molecular orbital theory that a conformation between the provitamin and the vitamin shows higher conductance than those of the reactant and product. We also find experimental evidence of this electrical character by directly measuring current-voltage characteristics on irradiated and nonirradiated samples of the provitamin.

View Article and Find Full Text PDF