Objectives: Immunotherapies targeting natural killer (NK) cell receptors have shown promise against leukaemia. Unfortunately, cancer immunosuppressive mechanisms that alter NK cell phenotype prevent such approaches from being successful. The study utilises advanced cytometry to examine how cancer immunosuppressive pathways affect NK cell phenotypic changes in clinical samples.
View Article and Find Full Text PDFNext-generation humanised mouse models and single-cell RNA sequencing (scRNAseq) approaches enable in-depth studies into human immune cell biology. Here we used NSG-SGM3 mice engrafted with human umbilical cord haematopoietic stem cells to investigate how human immune cells respond to and/or are changed by traumatic spinal cord injury (SCI). We hypothesised that the use of such mice could help advance our understanding of spinal cord injury-induced immune depression syndrome (SCI-IDS), and also how human leukocytes change as they migrate from the circulation into the lesion site.
View Article and Find Full Text PDFImmunodeficient mice bearing human immune systems, or "humanized" chimeric mice, are widely used in basic research, along with the preclinical stages of drug development. Nonobese diabetic-severe combined immunodeficiency (NOD-SCID) IL2Rγ (NSG) mice expressing human stem cell factor, granulocyte-macrophage colony stimulating factor, and interleukin-3 (NSG-SGM3) support robust development of human myeloid cells and T cells but have reduced longevity due to the development of fatal hemophagocytic lymphohistiocytosis (HLH). Here, we describe an optimized protocol for development of human immune chimerism in NSG-SGM3 mice.
View Article and Find Full Text PDFHypoglycemia in type 1 diabetes associates with changes in the pancreatic islet α cells, where the receptor for advanced glycation end products (RAGE) is highly expressed. This study compared islet RAGE expression in donors without diabetes, those at risk of, and those with type 1 diabetes. Laser-dissected islets were subject to RNA bioinformatics and adjacent pancreatic tissue were assessed by confocal microscopy.
View Article and Find Full Text PDFAntiviral CD8 T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-β (IFNα/β)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4 T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/β or CD40 alone.
View Article and Find Full Text PDFGrowing interest surrounds adoptive cellular therapies utilizing Natural Killer (NK) cells, which can be obtained from various sources, including umbilical cord blood (UCB) and adult peripheral blood (APB). Understanding NK cell receptor expression and diversity in such cellular sources will guide future therapeutic designs. We used a 20-color flow cytometry panel to compare unstimulated and cytokine-activated UCB and APB NK cells.
View Article and Find Full Text PDFPoor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome.
View Article and Find Full Text PDFDendritic cells (DCs) are functionally diverse and are present in most adult tissues, but deep understanding of human DC biology is hampered by relatively small numbers of these in circulation and their short lifespan in human tissues. We built a transcriptional atlas of human DCs by combining samples from 14 expression profiling studies derived from 10 laboratories. We identified significant gene expression variation of DC subset-defining markers across tissue type and upon viral or bacterial stimulation.
View Article and Find Full Text PDFType 1 diabetes is an autoimmune disease with no cure, where clinical translation of promising therapeutics has been hampered by the reproducibility crisis. Here, short-term administration of an antagonist to the receptor for advanced glycation end products (sRAGE) protected against murine diabetes at two independent research centers. Treatment with sRAGE increased regulatory T cells (Tregs) within the islets, pancreatic lymph nodes, and spleen, increasing islet insulin expression and function.
View Article and Find Full Text PDFStimulator of Interferon Genes (STING) is a cytosolic sensor of cyclic dinucleotides (CDNs). The activation of dendritic cells (DC) the STING pathway, and their subsequent production of type I interferon (IFN) is considered central to eradicating tumours in mouse models. However, this contribution of STING in preclinical murine studies has not translated into positive outcomes of STING agonists in phase I & II clinical trials.
View Article and Find Full Text PDFClin Transl Immunology
January 2022
Objectives: DROSHA and DICER have central roles in the biogenesis of microRNAs (miRNAs). However, we previously showed that in the murine system, DROSHA has an alternate function where it directly recognises and cleaves protein-coding messenger (m)RNAs and this is critical for safeguarding the pluripotency of haematopoietic stem cells (HSCs). Maintenance of murine HSC function is dependent on DROSHA-mediated cleavage of two mRNAs, and .
View Article and Find Full Text PDFIntroduction: The use of dendritic cell (DC)-based cancer vaccines over three decades has shown them to be a safe therapeutic approach against a range of hematological and solid malignancies. However, underwhelming and inconsistent results from clinical trials have seen them move in and out of favor. The limitations of generated monocyte-derived DC (MoDC) in these therapies provide a pointed explanation for the varying and somewhat disappointing clinical outcomes.
View Article and Find Full Text PDFDEC-205 is a cell-surface receptor that transports bound ligands into the endocytic pathway for degradation or release within lysosomal endosomes. This receptor has been reported to bind a number of ligands, including keratin, and some classes of CpG oligodeoxynucleotides (ODN). In this study, we explore in detail the requirements for binding ODNs, revealing that DEC-205 efficiently binds single-stranded, phosphorothioated ODN of ≥14 bases, with preference for the DNA base thymidine, but with no requirement for a CpG motif.
View Article and Find Full Text PDFHalf of the mortality in diabetes is seen in individuals <50 years of age and commonly predicted by the early onset of diabetic kidney disease (DKD). In type 1 diabetes, increased urinary albumin-to-creatinine ratio (uACR) during adolescence defines this risk, but the pathological factors responsible remain unknown. We postulated that early in diabetes, glucose variations contribute to kidney injury molecule-1 (KIM-1) release from circulating T cells, elevating uACR and DKD risk.
View Article and Find Full Text PDFObjective: Autoantibodies to central nervous system (CNS) antigens are increasingly identified in patients with epilepsy. Alterations in cytokines and chemokines have also been demonstrated in epilepsy, but this has not been explored in subjects with autoantibodies. If antibody positive and antibody negative subjects show a difference in immune activation, as measured by cytokine levels, this could improve diagnostic and therapeutic approaches, and provide insights into the underlying pathophysiology.
View Article and Find Full Text PDFBackground: The conventional type 1 dendritic cell subset (cDC1) is indispensable for tumor immune responses and the efficacy of immune checkpoint inhibitor (ICI) therapies in animal models but little is known about the role of the human CD141 DC cDC1 equivalent in patients with melanoma.
Methods: We developed a flow cytometry assay to quantify and characterize human blood DC subsets in healthy donors and patients with stage 3 and stage 4 metastatic melanoma. To examine whether harnessing CD141 DCs could improve responses to ICIs in human melanoma, we developed a humanized mouse model by engrafting immunodeficient NSG-SGM3 mice with human CD34 hematopoietic stem cells (HSCs) from umbilical cord blood followed by transplantation of a human melanoma cell line and treatment with anti-programmed cell death protein-1 (anti-PD-1).
The endothelial adhesion protein E-selectin/CD62E is not required for leukocyte homing, unlike closely related family member P-selectin/CD62P. As transmigration through the endothelium is one of the first steps in generating a local immune response, we hypothesized that E-selectin may play additional roles in the early stages of immune activation. We found contact with E-selectin, but not P-selectin or vascular cell adhesion molecule 1 (CD106), induced phosphorylation of protein kinase B (AKT) and nuclear factor-κB in mouse bone marrow-derived macrophages (BMDMs) in vitro.
View Article and Find Full Text PDFThe dendritic cell receptor Clec9A facilitates processing of dead cell-derived antigens for cross-presentation and the induction of effective CD8 T cell immune responses. Here, we show that this process is regulated by E3 ubiquitin ligase RNF41 and define a new ubiquitin-mediated mechanism for regulation of Clec9A, reflecting the unique properties of Clec9A as a receptor specialized for delivery of antigens for cross-presentation. We reveal RNF41 is a negative regulator of Clec9A and the cross-presentation of dead cell-derived antigens by mouse dendritic cells.
View Article and Find Full Text PDFDendritic cells are a specialized subset of hematopoietic cells essential for mounting immunity against tumors and infectious disease as well as inducing tolerance for maintenance of homeostasis. DCs are equipped with number of immunoregulatory or stimulatory molecules that interact with other leukocytes to modulate their functions. Recent advances in DC biology identified a specific role for the conventional dendritic cell type 1 (cDC1) in eliciting cytotoxic CD8+ T cells essential for clearance of tumors and infected cells.
View Article and Find Full Text PDFBackground: Dendritic cells (DCs) are crucial for the efficacy of cancer vaccines, but current vaccines do not harness the key cDC1 subtype required for effective CD8 T-cell-mediated tumor immune responses. Vaccine immunogenicity could be enhanced by specific delivery of immunogenic tumor antigens to CD141 DCs, the human cDC1 equivalent. CD141 DCs exclusively express the C-type-lectin-like receptor CLEC9A, which is important for the regulation of CD8 T cell responses.
View Article and Find Full Text PDFCancer immunotherapy harnesses the ability of the immune system to recognize and eliminate cancer. The potent ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses underpins the successful generation of anti-tumor immune responses. DCs are a heterogeneous leukocyte population comprised of distinct subsets that drive specific types of immune responses.
View Article and Find Full Text PDFMany adenocarcinomas, including colorectal cancer (CRC), overexpress the MUC13 cell surface mucin, but the functional significance and mechanisms are unknown. Here, we report the roles of MUC13 in colonic tumorigenesis and tumor progression. High-MUC13 expression is associated with poor survival in two independent patient cohorts.
View Article and Find Full Text PDFLeukemias are clonal proliferative disorders arising from immature leukocytes in the bone marrow. While the advent of targeted therapies has improved survival in certain subtypes, relapse after initial therapy is a major problem. Dendritic cell (DC) vaccination has the potential to induce tumor-specific T cells providing long-lasting, anti-tumor immunity.
View Article and Find Full Text PDFSince the 1997 discovery that the first identified human homolog of Drosophila Toll could activate the innate immune system, the innate arm of immunity has rapidly taken on a new light as an important player in the recognition of pathogens and damaged self. The recognition of danger by dendritic cells (DC) is a crucial step in activating the adaptive immune system. Different DC express varied subsets of pattern recognition receptors (PRR), enabling both overlap and exclusivity in the recognition of danger signals by DC.
View Article and Find Full Text PDF