Publications by authors named "Kristen Nixon"

During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org).

View Article and Find Full Text PDF

Multiple COVID-19 vaccines were proven to be safe and effective in curbing severe illness, but despite vaccine availability, vaccination rates were relatively low in the United States (U.S.).

View Article and Find Full Text PDF

An impressive number of COVID-19 data catalogs exist. However, none are fully optimized for data science applications. Inconsistent naming and data conventions, uneven quality control, and lack of alignment between disease data and potential predictors pose barriers to robust modeling and analysis.

View Article and Find Full Text PDF

Infectious disease modelling can serve as a powerful tool for situational awareness and decision support for policy makers. However, COVID-19 modelling efforts faced many challenges, from poor data quality to changing policy and human behaviour. To extract practical insight from the large body of COVID-19 modelling literature available, we provide a narrative review with a systematic approach that quantitatively assessed prospective, data-driven modelling studies of COVID-19 in the USA.

View Article and Find Full Text PDF

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.

View Article and Find Full Text PDF