Publications by authors named "Kristen L Deak"

Purpose: The specialty of Laboratory Genetics and Genomics (LGG) was created in 2017 in an effort to reflect the increasing convergence in technologies and approaches between clinical molecular genetics and clinical cytogenetics. However, there has not yet been any formal evaluation of the merging of these disciplines and the challenges faced by Program Directors (PDs) tasked with ensuring the successful training of laboratory geneticists under the new model.

Methods: An electronic multi-question Qualtrics survey was created and was sent to the PD for each of the Accreditation Council for Graduate Medical Education-accredited LGG fellowship programs at the time.

View Article and Find Full Text PDF

Biallelic loss-of-function variants in the MUSK gene result in two allelic disorders: (1) congenital myasthenic syndrome (CMS; OMIM: 616325), a neuromuscular disorder that has a range of severity from severe neonatal-onset weakness to mild adult-onset weakness, and (2) fetal akinesia deformation sequence (OMIM: 208150), a form of pregnancy loss characterized by severe muscle weakness in the fetus. The MUSK gene codes for muscle-specific kinase (MuSK), a receptor tyrosine kinase involved in the development of the neuromuscular junction. Here, we report a case of neonatal-onset MUSK-related CMS in a patient harboring compound heterozygous deletions in the MUSK gene, including (1) a deletion of exons 2-3 leading to an in-frame MuSK protein lacking the immunoglobulin 1 (Ig1) domain and (2) a deletion of exons 7-11 leading to an out-of-frame, truncated MuSK protein.

View Article and Find Full Text PDF

Oculogastrointestinal neurodevelopmental syndrome has been described in seven previously published individuals who harbor biallelic pathogenic variants in the CAPN15 gene. Biallelic missense variants have been reported to demonstrate a phenotype of eye abnormalities and developmental delay, while biallelic loss of function variants exhibit phenotypes including microcephaly and craniofacial abnormalities, cardiac and genitourinary malformations, and abnormal neurologic activity. We report six individuals from three unrelated families harboring biallelic deleterious variants in CAPN15 with phenotypes overlapping those previously described for this disorder.

View Article and Find Full Text PDF

Introduction: A deficiency of glycogen debrancher enzyme in patients with glycogen storage disease type III (GSD III) manifests with hepatic, cardiac, and muscle involvement in the most common subtype (type a), or with only hepatic involvement in patients with GSD IIIb.

Objective And Methods: To describe longitudinal biochemical, radiological, muscle strength and ambulation, liver histopathological findings, and clinical outcomes in adults (≥18 years) with glycogen storage disease type III, by a retrospective review of medical records.

Results: Twenty-one adults with GSD IIIa (14 F & 7 M) and four with GSD IIIb (1 F & 3 M) were included in this natural history study.

View Article and Find Full Text PDF

Genomic tumor profiling by next-generation sequencing (NGS) allows for large-scale tumor testing to inform targeted cancer therapies and immunotherapies, and to identify patients for clinical trials. These tests are often underutilized in patients with late-stage solid tumors and are typically performed in centralized specialty laboratories, thereby limiting access to these complex tests. Personal Genome Diagnostics Inc.

View Article and Find Full Text PDF

Cat eye syndrome (CES) is a rare genetic defect, characterized by iris colobomas, preauricular skin tags, and anal malformations. Affecting 1 in 150,000 people, this defect is caused by duplication or triplication of the proximal long (q) arm of chromosome 22. Congenital heart disease is associated with CES.

View Article and Find Full Text PDF
Article Synopsis
  • Some doctors recommend using specific types of genetic information called transcripts to figure out if a genetic variant is harmful, but different labs may not agree on which transcripts to use.
  • Three patients had wrong genetic test results because the labs didn't think about extra transcripts and how genes are expressed in different body tissues.
  • The study shows that it's super important to look at different types of transcripts when figuring out genetic results, especially when those results don’t match a patient's symptoms.
View Article and Find Full Text PDF

Congenital disorders of glycosylation (CDGs) comprise a large number of inherited metabolic defects that affect the biosynthesis and attachment of glycans. CDGs manifest as a broad spectrum of disease, most often including neurodevelopmental and skeletal abnormalities and skin laxity. Two patients with biallelic CSGALNACT1 variants and a mild skeletal dysplasia have been described previously.

View Article and Find Full Text PDF

The 17 genes of the T-box family are transcriptional regulators that are involved in all stages of embryonic development, including craniofacial, brain, heart, skeleton and immune system. Malformation syndromes have been linked to many of the T-box genes. For example, haploinsufficiency of TBX1 is responsible for many structural malformations in DiGeorge syndrome caused by a chromosome 22q11.

View Article and Find Full Text PDF

Next-generation sequencing shows great promise by allowing rapid mutational analysis of multiple genes in human cancers. Recently, we implemented the multiplex PCR-based Ion AmpliSeq Cancer Hotspot Panel (>200 amplicons in 50 genes) to evaluate EGFR, KRAS, and BRAF in lung and colorectal adenocarcinomas. In 10% of samples, automated analysis identified a novel G873R substitution mutation in EGFR.

View Article and Find Full Text PDF

Several new microdeletion and microduplication syndromes have been discovered in a genotype-first approach. Many of these disorders are caused by nonallelic homologous recombination between blocks of segmental duplication. The authors describe 9 regions for which copy number alteration is proposed to cause an abnormal phenotype.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs), including spina bifida and anencephaly, are the second most common birth defect with an incidence of 1/1000. Genetic factors are believed to contribute to NTD risk and family-based studies can be useful for identifying such risk factors.

Methods: We ascertained 1066 NTD families (1467 affected patients), including 307 multiplex NTD families.

View Article and Find Full Text PDF

Background: Folate metabolism pathway genes have been examined for association with neural tube defects (NTDs) because folic acid supplementation reduces the risk of this debilitating birth defect. Most studies addressed these genes individually, often with different populations providing conflicting results.

Objectives: Our study evaluates several folate pathway genes for association with human NTDs, incorporating an environmental cofactor: maternal folate supplementation.

View Article and Find Full Text PDF

Background: Vitamin A (retinol), in the form of retinoic acid (RA), is essential for normal development of the human embryo. Studies in the mouse and zebrafish have shown that retinol is metabolized in the developing spinal cord and must be maintained in a precise balance along the anteroposterior axis. Both excess and deficiency of RA can affect morphogenesis, including failures of neural tube closure.

View Article and Find Full Text PDF

Neural tube defects (NTDs) are common birth defects, occurring in approximately 1/1,000 births; both genetic and environmental factors are implicated. To date, no major genetic risk factors have been identified. Throughout development, cell adhesion molecules are strongly implicated in cell-cell interactions, and may play a role in the formation and closure of the neural tube.

View Article and Find Full Text PDF