Unlabelled: The increasing knowledge of microbial ecology in food products relating to quality and safety and the established usefulness of machine learning algorithms for anomaly detection in multiple scenarios suggests that the application of microbiome data in food production systems for anomaly detection could be a valuable approach to be used in food systems. These methods could be used to identify ingredients that deviate from their typical microbial composition, which could indicate food fraud or safety issues. The objective of this study was to assess the feasibility of using shotgun sequencing data as input into anomaly detection algorithms using fluid milk as a model system.
View Article and Find Full Text PDFWith the emergence of multimodal electronic health records, the evidence for diseases, events, or findings may be present across multiple modalities ranging from clinical to imaging and genomic data. Developing effective patient-tailored therapeutic guidance and outcome prediction will require fusing evidence across these modalities. Developing general-purpose frameworks capable of modeling fine-grained and multi-faceted complex interactions, both within and across modalities is an important open problem in multimodal fusion.
View Article and Find Full Text PDFDespite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry).
View Article and Find Full Text PDFEpitopes are short amino acid sequences that define the antigen signature to which an antibody or T cell receptor binds. In light of the current pandemic, epitope analysis and prediction are paramount to improving serological testing and developing vaccines. In this paper, known epitope sequences from SARS-CoV, SARS-CoV-2, and other Coronaviridae were leveraged to identify additional antigen regions in 62K SARS-CoV-2 genomes.
View Article and Find Full Text PDFSARS-CoV-2 genomic sequencing efforts have scaled dramatically to address the current global pandemic and aid public health. However, autonomous genome annotation of SARS-CoV-2 genes, proteins, and domains is not readily accomplished by existing methods and results in missing or incorrect sequences. To overcome this limitation, we developed a novel semi-supervised pipeline for automated gene, protein, and functional domain annotation of SARS-CoV-2 genomes that differentiates itself by not relying on the use of a single reference genome and by overcoming atypical genomic traits that challenge traditional bioinformatic methods.
View Article and Find Full Text PDFThe number of publicly available microbiome samples is continually growing. As data set size increases, bottlenecks arise in standard analytical pipelines. Faith's phylogenetic diversity (Faith's PD) is a highly utilized phylogenetic alpha diversity metric that has thus far failed to effectively scale to trees with millions of vertices.
View Article and Find Full Text PDFUntargeted sequencing of nucleic acids present in food can inform the detection of food safety and origin, as well as product tampering and mislabeling issues. The application of such technologies to food analysis may reveal valuable insights that are simply unobtainable by targeted testing, leading to the efforts of applying such technologies in the food industry. However, before these approaches can be applied, it is imperative to verify that the most appropriate methods are used at every step of the process: gathering of primary material, laboratory methods, data analysis, and interpretation.
View Article and Find Full Text PDFRapid tests for active SARS-CoV-2 infections rely on reverse transcription polymerase chain reaction (RT-PCR). RT-PCR uses reverse transcription of RNA into complementary DNA (cDNA) and amplification of specific DNA (primer and probe) targets using polymerase chain reaction (PCR). The technology makes rapid and specific identification of the virus possible based on sequence homology of nucleic acid sequence and is much faster than tissue culture or animal cell models.
View Article and Find Full Text PDFAs COVID-19 hounds the world, the common cause of finding a swift solution to manage the pandemic has brought together researchers, institutions, governments, and society at large. The Internet of Things (IoT), artificial intelligence (AI)-including machine learning (ML) and Big Data analytics-as well as Robotics and Blockchain, are the four decisive areas of technological innovation that have been ingenuity harnessed to fight this pandemic and future ones. While these highly interrelated smart and connected health technologies cannot resolve the pandemic overnight and may not be the only answer to the crisis, they can provide greater insight into the disease and support frontline efforts to prevent and control the pandemic.
View Article and Find Full Text PDFStandard workflows for analyzing microbiomes often include the creation and curation of phylogenetic trees. Here we present EMPress, an interactive web tool for visualizing trees in the context of microbiome, metabolome, and other community data scalable to trees with well over 500,000 nodes. EMPress provides novel functionality-including ordination integration and animations-alongside many standard tree visualization features and thus simplifies exploratory analyses of many forms of 'omic data.
View Article and Find Full Text PDFMicrobiome samples are inherently defined by the environment in which they are found. Therefore, data that provide context and enable interpretation of measurements produced from biological samples, often referred to as metadata, are critical. Important contributions have been made in the development of community-driven metadata standards; however, these standards have not been uniformly embraced by the microbiome research community.
View Article and Find Full Text PDFIn this work, we hypothesized that shifts in the food microbiome can be used as an indicator of unexpected contaminants or environmental changes. To test this hypothesis, we sequenced the total RNA of 31 high protein powder (HPP) samples of poultry meal pet food ingredients. We developed a microbiome analysis pipeline employing a key eukaryotic matrix filtering step that improved microbe detection specificity to >99.
View Article and Find Full Text PDFSynergistic effects of bacteria on viral stability and transmission are widely documented but remain unclear in the context of SARS-CoV-2. We collected 972 samples from hospitalized ICU patients with coronavirus disease 2019 (COVID-19), their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and contextualized the massive microbial diversity in this dataset in a meta-analysis of over 20,000 samples.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
April 2022
The rapid growth in biological sequence data is revolutionizing our understanding of genotypic diversity and challenging conventional approaches to informatics. With the increasing availability of genomic data, traditional bioinformatic tools require substantial computational time and the creation of ever-larger indices each time a researcher seeks to gain insight from the data. To address these challenges, we pre-computed important relationships between biological entities spanning the Central Dogma of Molecular Biology and captured this information in a relational database.
View Article and Find Full Text PDFHere we propose that using shotgun sequencing to examine food leads to accurate authentication of ingredients and detection of contaminants. To demonstrate this, we developed a bioinformatic pipeline, FASER (Food Authentication from SEquencing Reads), designed to resolve the relative composition of mixtures of eukaryotic species using RNA or DNA sequencing. Our comprehensive database includes >6000 plants and animals that may be present in food.
View Article and Find Full Text PDFTraditional taxonomy in biology assumes that life is organized in a simple tree. Attempts to classify microorganisms in this way in the genomics era led microbiologists to look for finite sets of 'core' genes that uniquely group taxa as clades in the tree. However, the diversity revealed by large-scale whole genome sequencing is calling into question the long-held model of a hierarchical tree of life, which leads to questioning of the definition of a species.
View Article and Find Full Text PDFMilk has been well established as the optimal nutrition source for infants, yet there is still much to be understood about its molecular composition. Therefore, our objective was to develop and compare comprehensive milk proteomes for human and rhesus macaques to highlight differences in neonatal nutrition. We developed a milk proteomics technique that overcomes previous technical barriers including pervasive post-translational modifications and limited sample volume.
View Article and Find Full Text PDF