Introduction: A recent case study showed that repeated sessions of caloric vestibular stimulation (CVS) relieved motor and non-motor symptoms associated with Parkinson's disease (PD). Here we sought to confirm these results in a prospective, double-blind, randomized, placebo treatment-controlled study.
Methods: 33 PD subjects receiving stable anti-Parkinsonian therapy completed an active (n = 16) or placebo (n = 17) treatment period.
Objective: To evaluate the safety and efficacy of a novel solid-state, caloric vestibular stimulation (CVS) device to provide adjuvant therapy for the prevention of episodic migraine in adult migraineurs.
Background: Migraine causes significant disability in ∼12% of the world population. No current migraine preventive treatment provides full clinical relief, and many exhibit high rates of discontinuation due to adverse events.
IEEE J Transl Eng Health Med
October 2016
Caloric vestibular stimulation (CVS) to elicit the vestibulo-ocular reflex has long been used in clinical settings to aid in the diagnosis of balance disorders and to confirm the absence of brainstem function. While a number of studies have hinted at the potential therapeutic applications of CVS, the limitations of existing devices have frustrated that potential. Current CVS irrigators use water or air during short-duration applications; however, this approach is not tenable for longer duration therapeutic protocols or home use.
View Article and Find Full Text PDFBackground: Development of treatments for obsessive-compulsive disorder (OCD) is hampered by a lack of mechanistic understanding about this prevalent neuropsychiatric condition. Although circuit changes such as elevated frontostriatal activity are linked to OCD, the underlying molecular signaling that drives OCD-related behaviors remains largely unknown. Here, we examine the significance of type 5 metabotropic glutamate receptors (mGluR5s) for behavioral and circuit abnormalities relevant to OCD.
View Article and Find Full Text PDFThe dorsolateral striatum (DLS) is implicated in habit formation. However, the DLS circuit mechanisms underlying habit remain unclear. A key role for DLS is to transform sensorimotor cortical input into firing of output neurons that project to the mutually antagonistic direct and indirect basal ganglia pathways.
View Article and Find Full Text PDFBackground: Synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3) is an excitatory postsynaptic protein implicated in the pathogenesis of obsessive-compulsive behaviors. In mice, genetic deletion of Sapap3 causes obsessive-compulsive disorder (OCD)-like behaviors that are rescued by striatal expression of Sapap3, demonstrating the importance of striatal neurotransmission for the OCD-like behaviors. In the striatum, there are two main excitatory synaptic circuits, corticostriatal and thalamostriatal.
View Article and Find Full Text PDFThe development of BAC transgenic mice expressing promoter-specific fluorescent reporter proteins has been a great asset for neuroscience by enabling detection of neuronal subsets in live tissue. For the study of basal ganglia physiology, reporters driven by type 1 and 2 dopamine receptors have been particularly useful for distinguishing the two classes of striatal projection neurons - striatonigral and striatopallidal. However, emerging evidence suggests that some of the transgenic reporter lines may have suboptimal features.
View Article and Find Full Text PDFWe previously reported greater GABAA receptor-mediated tonic currents in D2+ striatopallidal than D1+ striatonigral medium spiny neurons (MSNs) are mediated by alpha5-subunit-containing receptors. Here, we used whole-cell recordings in slices from bacterial artificial chromosome transgenic mice to investigate the link between subunit composition, phosphorylation, and dopamine receptor activation. Whole-cell recordings in slices from delta-subunit knock-out mice demonstrate that while MSNs in wild-type mice do express delta-subunit-containing receptors, this receptor subtype is not responsible for tonic conductance observed in the acute slice preparation.
View Article and Find Full Text PDFMedium spiny neurons (MSNs) provide the principal output for the dorsal striatum. Those that express dopamine D2 receptors (D2+) project to the globus pallidus external and are thought to inhibit movement, whereas those that express dopamine D1 receptors (D1+) project to the substantia nigra pars reticulata and are thought to facilitate movement. Whole-cell and outside-out patch recordings in slices from bacterial artificial chromosome transgenic mice examined the role of GABA(A) receptor-mediated currents in dopamine receptor D1+ striatonigral and D2+ striatopallidal MSNs.
View Article and Find Full Text PDFLong-term changes in synaptic efficacy produced by high-frequency stimulation (HFS) of glutamatergic afferents to the rat dorsolateral striatum exhibit heterogeneity during early stages of postnatal development. Whereas HFS most often induces striatal long-term potentiation (LTP) in rats postnatal day 12 (P12)-P14, the same stimulation tends to induce long-term depression (LTD) at ages P16-P34. Previous studies have shown that striatal LTD induction depends on retrograde endocannabinoid signaling and activation of the CB1 cannabinoid receptor.
View Article and Find Full Text PDF