Publications by authors named "Kristen H Burns"

Generating wavelength-tunable picosecond laser pulses from an ultrafast laser source is essential for femtosecond stimulated Raman scattering (FSRS) measurements. Etalon filters produce narrowband (picosecond) pulses with an asymmetric temporal profile that is ideal for stimulated resonance Raman excitation. However, direct spectral filtering of femtosecond laser pulses is typically limited to the laser's fundamental and harmonic frequencies due to very low transmission of broad bandwidth pulses through an etalon.

View Article and Find Full Text PDF

Some diarylethene molecular switches have a low quantum yield for cycloreversion when excited by a single photon, but react more efficiently following sequential two-photon excitation. The increase in reaction efficiency depends on both the relative time delay and the wavelength of the second photon. This paper examines the wavelength-dependent mechanism for sequential excitation using excited-state resonance Raman spectroscopy to probe the ultrafast (sub-30 fs) dynamics on the upper electronic state following secondary excitation.

View Article and Find Full Text PDF

Resonance Raman spectroscopy probes the ultrafast dynamics of a diarylethene (DAE) molecular switch following excitation into the first two optical absorption bands. Mode-specific resonance enhancements for Raman excitation at visible (750-560 nm) and near-UV (420-390 nm) wavelengths compared with the calculated and experimental off-resonance Raman spectrum at 785 nm reveal different Franck-Condon active vibrations for the two electronically excited states. The resonance enhancements at visible wavelengths are consistent with initial motion on the first excited-state that promotes the cycloreversion reaction, whereas the enhancements for excitation at near-UV wavelengths highlight motions involving conjugated backbone and phenyl ring stretching modes that are orthogonal to the reaction coordinate.

View Article and Find Full Text PDF

Broadband stimulated Raman scattering (SRS) is often observed in applications that use nonlinear spectroscopy to probe the composition or dynamics of complex systems. Whether the SRS response is measured intentionally or unintentionally, as a background signal, the relative scattering intensities provide a quantitative measure of the population profile of target molecules. Solvent scattering is a valuable internal reference for determining absolute concentrations in these applications, but accurate cross sections have been reported for only a limited number of transitions in select solvents and were measured using spontaneous Raman scattering with narrowband continuous wave or nanosecond light sources.

View Article and Find Full Text PDF