Background And Aims: The increased likelihood and severity of storm events has brought into focus the role of coastal ecosystems in provision of shoreline protection by attenuating wave energy. Canopy-forming kelps, including giant kelp (Macrocystis pyrifera), are thought to provide this ecosystem service, but supporting data are extremely limited. Previous in situ examinations relied mostly on comparisons between nominally similar sites with and without kelp.
View Article and Find Full Text PDFOcean acidification is expected to degrade marine ecosystems, yet most studies focus on organismal-level impacts rather than ecological perturbations. Field studies are especially sparse, particularly ones examining shifts in direct and indirect consumer interactions. Here we address such connections within tidepool communities of rocky shores, focusing on a three-level food web involving the keystone sea star predator, , a common herbivorous snail, , and a macroalgal basal resource, .
View Article and Find Full Text PDFGlobal-scale ocean acidification has spurred interest in the capacity of seagrass ecosystems to increase seawater pH within crucial shoreline habitats through photosynthetic activity. However, the dynamic variability of the coastal carbonate system has impeded generalization into whether seagrass aerobic metabolism ameliorates low pH on physiologically and ecologically relevant timescales. Here we present results of the most extensive study to date of pH modulation by seagrasses, spanning seven meadows (Zostera marina) and 1000 km of U.
View Article and Find Full Text PDF