Publications by authors named "Kristen C Cooke"

Background: Weight loss can improve the metabolic complications of obesity. However, it is unclear whether insulin resistance persists despite weight loss and whether any protective benefits are preserved following weight regain (weight cycling). The impact of genetic background on weight cycling is undocumented.

View Article and Find Full Text PDF

Unlabelled: Mitochondria facilitate thousands of biochemical reactions, covering a broad spectrum of anabolic and catabolic processes. Here we demonstrate that the adipocyte mitochondrial proteome is markedly altered across multiple models of insulin resistance and reveal a consistent decrease in the level of the mitochondrial processing peptidase miPEP.

Objective: To determine the role of miPEP in insulin resistance.

View Article and Find Full Text PDF

Despite the fact that genes and the environment are known to play a central role in islet function, our knowledge of how these parameters interact to modulate insulin secretory function remains relatively poor. Presently, we performed ex vivo glucose-stimulated insulin secretion and insulin content assays in islets of 213 mice from 13 inbred mouse strains on chow, Western diet (WD), and a high-fat, carbohydrate-free (KETO) diet. Strikingly, among these 13 strains, islets from the commonly used C57BL/6J mouse strain were the least glucose responsive.

View Article and Find Full Text PDF
Article Synopsis
  • * Research reveals that a deficiency in coenzyme Q (CoQ) and high levels of ceramide in skeletal muscle mitochondria lead to mitochondrial dysfunction, contributing to IR.
  • * Reducing mitochondrial ceramide and increasing CoQ levels may help prevent IR and could inform new treatments for metabolic disorders and related conditions.
View Article and Find Full Text PDF

The ability of metabolically active tissues to increase glucose uptake in response to insulin is critical to whole-body glucose homeostasis. This report describes the Dual Tracer Test, a robust method involving sequential retro-orbital injection of [14C]2-deoxyglucose ([14C]2DG) alone, followed 40 min later by injection of [3H]2DG with a maximal dose of insulin to quantify both basal and insulin-stimulated 2DG uptake in the same mouse. The collection of both basal and insulin-stimulated measures from a single animal is imperative for generating high-quality data since differences in insulin action may be misinterpreted mechanistically if basal glucose uptake is not accounted for.

View Article and Find Full Text PDF

Systems genetics has begun to tackle the complexity of insulin resistance by capitalising on computational advances to study high-diversity populations. 'Diversity Outbred in Australia (DOz)' is a population of genetically unique mice with profound metabolic heterogeneity. We leveraged this variance to explore skeletal muscle's contribution to whole-body insulin action through metabolic phenotyping and skeletal muscle proteomics of 215 DOz mice.

View Article and Find Full Text PDF
Article Synopsis
  • * New findings reveal that high levels of ceramides in muscle cells lead to coenzyme Q (CoQ) depletion and mitochondrial issues, contributing to IR.
  • * Reducing ceramide levels or supplementing with CoQ can improve mitochondrial function and insulin sensitivity, suggesting a potential pathway for developing new treatments for IR and related disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Heterozygous mutations in PIK3R1 cause activated PI3Kδ syndrome 2 (APDS2), which shares symptoms with APDS1 caused by PIK3CD mutations.
  • Research using a CRISPR/Cas9 mouse model and patient immune cells revealed that PIK3R1 mutations lead to unique cellular defects, including issues with B cell function and survival of pups.
  • The study found important differences in how PIK3R1 loss-of-function (LOF) and PIK3CD gain-of-function (GOF) mutations affect immune cell signaling and function, highlighting distinct genetic impacts on immune health.
View Article and Find Full Text PDF

The failure of metabolic tissues to appropriately respond to insulin ("insulin resistance") is an early marker in the pathogenesis of type 2 diabetes. Protein phosphorylation is central to the adipocyte insulin response, but how adipocyte signaling networks are dysregulated upon insulin resistance is unknown. Here we employ phosphoproteomics to delineate insulin signal transduction in adipocyte cells and adipose tissue.

View Article and Find Full Text PDF

White adipose tissue is deposited mainly as subcutaneous adipose tissue (SAT), often associated with metabolic protection, and abdominal/visceral adipose tissue, which contributes to metabolic disease. To investigate the molecular underpinnings of these differences, we conducted comprehensive proteomics profiling of whole tissue and isolated adipocytes from these two depots across two diets from C57Bl/6J mice. The adipocyte proteomes from lean mice were highly conserved between depots, with the major depot-specific differences encoded by just 3% of the proteome.

View Article and Find Full Text PDF

Insulin-induced GLUT4 translocation to the plasma membrane in muscle and adipocytes is crucial for whole-body glucose homeostasis. Currently, GLUT4 trafficking assays rely on overexpression of tagged GLUT4. Here we describe a high-content imaging platform for studying endogenous GLUT4 translocation in intact adipocytes.

View Article and Find Full Text PDF

Trafficking regulator of GLUT4-1, TRARG1, positively regulates insulin-stimulated GLUT4 trafficking and insulin sensitivity. However, the mechanism(s) by which this occurs remain(s) unclear. Using biochemical and mass spectrometry analyses we found that TRARG1 is dephosphorylated in response to insulin in a PI3K/Akt-dependent manner and is a novel substrate for GSK3.

View Article and Find Full Text PDF
Article Synopsis
  • Skeletal muscle and adipose tissue insulin resistance are major contributors to metabolic diseases, and this study aimed to uncover the specific pathways involved in these tissues using different diets and mouse strains.
  • The research found that muscle insulin resistance is linked to gene-environment interactions and lowered levels of important enzymes, with no direct relationship between muscle and adipose tissue insulin responses.
  • Notably, the A/J mouse strain displayed significant adipocyte insulin resistance, highlighting that muscle and fat tissue insulin resistance can operate independently, emphasizing the importance of examining each tissue separately to grasp metabolic diseases.
View Article and Find Full Text PDF

The phosphoinositide 3-kinase (PI3K)-Akt network is tightly controlled by feedback mechanisms that regulate signal flow and ensure signal fidelity. A rapid overshoot in insulin-stimulated recruitment of Akt to the plasma membrane has previously been reported, which is indicative of negative feedback operating on acute timescales. Here, we show that Akt itself engages this negative feedback by phosphorylating insulin receptor substrate (IRS) 1 and 2 on a number of residues.

View Article and Find Full Text PDF

Intermittent fasting is a beneficial dietary treatment for obesity. But the response of each distinct adipose depot is currently poorly defined. Here we explore the response of key adipose depots to every-other-day fasting (EODF) in mice using proteomics.

View Article and Find Full Text PDF

Adipose tissue is essential for metabolic homeostasis, balancing lipid storage and mobilization based on nutritional status. This is coordinated by insulin, which triggers kinase signaling cascades to modulate numerous metabolic proteins, leading to increased glucose uptake and anabolic processes like lipogenesis. Given recent evidence that glucose is dispensable for adipocyte respiration, we sought to test whether glucose is necessary for insulin-stimulated anabolism.

View Article and Find Full Text PDF

Insulin action in adipose tissue is crucial for whole-body glucose homeostasis, with insulin resistance being a major risk factor for metabolic diseases such as type 2 diabetes. Recent studies have proposed mitochondrial oxidants as a unifying driver of adipose insulin resistance, serving as a signal of nutrient excess. However, neither the substrates for nor sites of oxidant production are known.

View Article and Find Full Text PDF

Exercise engages signaling networks to control the release of circulating factors beneficial to health. However, the nature of these networks remains undefined. Using high-throughput phosphoproteomics, we quantify 20,249 phosphorylation sites in skeletal muscle-like myotube cells and monitor their responses to a panel of cell stressors targeting aspects of exercise signaling in vivo.

View Article and Find Full Text PDF

Adipose tissue is essential for whole-body glucose homeostasis, with a primary role in lipid storage. It has been previously observed that lactate production is also an important metabolic feature of adipocytes, but its relationship to adipose and whole-body glucose disposal remains unclear. Therefore, using a combination of metabolic labeling techniques, here we closely examined lactate production of cultured and primary mammalian adipocytes.

View Article and Find Full Text PDF

The Ser/Thr protein kinase Akt regulates essential biological processes such as cell survival, growth, and metabolism. Upon growth factor stimulation, Akt is phosphorylated at Ser; however, how this phosphorylation contributes to Akt activation remains controversial. Previous studies, which induced loss of Ser phosphorylation by ablating its upstream kinase mTORC2, have implicated Ser phosphorylation as a driver of Akt substrate specificity.

View Article and Find Full Text PDF

Exercise stimulates cellular and physiological adaptations that are associated with widespread health benefits. To uncover conserved protein phosphorylation events underlying this adaptive response, we performed mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two widely used rodent models: treadmill running in mice and in situ muscle contraction in rats. We overlaid these phosphoproteomic signatures with cycling in humans to identify common cross-species phosphosite responses, as well as unique model-specific regulation.

View Article and Find Full Text PDF

Objective: Insulin suppresses adipose tissue lipolysis after a meal, playing a key role in metabolic homeostasis. This is mediated via the kinase Akt and its substrate phosphodiesterase 3B (PDE3B). Once phosphorylated and activated, PDE3B hydrolyses cAMP leading to the inactivation of cAMP-dependent protein kinase (PKA) and suppression of lipolysis.

View Article and Find Full Text PDF

Insulin resistance is a pathophysiological state defined by impaired responses to insulin and is a risk factor for several metabolic diseases, most notably type 2 diabetes. Insulin resistance occurs in insulin target tissues including liver, adipose and skeletal muscle. Methods such as insulin tolerance tests and hyperinsulinaemic-euglycaemic clamps permit assessment of insulin responses in specific tissues and allow the study of the progression and causes of insulin resistance.

View Article and Find Full Text PDF