Publications by authors named "Kristen Bowles-Johnson"

Purpose: To demonstrate the first near-infrared adaptive optics fluorescence lifetime imaging ophthalmoscopy (NIR-AOFLIO) measurements in vivo of the human retinal pigment epithelial (RPE) cellular mosaic and to visualize lifetime changes at different retinal eccentricities.

Methods: NIR reflectance and autofluorescence were captured using a custom adaptive optics scanning light ophthalmoscope in 10 healthy subjects (23-64 years old) at seven eccentricities and in two eyes with retinal abnormalities. Repeatability was assessed across two visits up to 8 weeks apart.

View Article and Find Full Text PDF

Purpose: Fluorescence lifetime ophthalmoscopy (FLIO) is an emerging clinical modality that could provide biomarkers of retinal health beyond fluorescence intensity. Adaptive optics (AO) ophthalmoscopy provides the confocality to measure fluorescence lifetime (FL) primarily from the retinal pigment epithelium (RPE) whereas clinical FLIO has greater influence from fluorophores in the inner retina and lens. Adaptive optics fluorescence lifetime ophthalmoscopy (AOFLIO) measures of FL in vivo could provide insight into RPE health at different stages of disease.

View Article and Find Full Text PDF

Schizophrenia is increasingly recognized as a systemic disease, characterized by dysregulation in multiple physiological systems (eg, neural, cardiovascular, endocrine). Many of these changes are observed as early as the first psychotic episode, and in people at high risk for the disorder. Expanding the search for biomarkers of schizophrenia beyond genes, blood, and brain may allow for inexpensive, noninvasive, and objective markers of diagnosis, phenotype, treatment response, and prognosis.

View Article and Find Full Text PDF

The intrinsic fluorescence properties of lipofuscin - naturally occurring granules that accumulate in the retinal pigment epithelium - are a potential biomarker for the health of the eye. A new modality is described here which combines adaptive optics technology with fluorescence lifetime detection, allowing for the investigation of functional and compositional differences within the eye and between subjects. This new adaptive optics fluorescence lifetime imaging ophthalmoscope was demonstrated in 6 subjects.

View Article and Find Full Text PDF