The olfactory mucosa is important for both the sense of smell and as a mucosal immune barrier to the upper airway and brain. However, little is known about how the immune system mediates the conflicting goals of neuronal maintenance and inflammation in this tissue. A number of immune cell populations reside within the olfactory mucosa and yet we have little understanding of how these resident olfactory immune cells functionally interact with the chemosensory environment.
View Article and Find Full Text PDFBoth glioblastoma (GBM) and dementia are devastating diseases with limited treatments that are usually not curative. Having clinically diagnosed dementia with an associated biopsy-proven etiology and a coexisting GBM diagnosis is a rare occurrence. The relationship between the development of neurodegenerative dementia and GBM is unclear, as there are conflicting reports in the literature.
View Article and Find Full Text PDFGlioblastoma is a deadly brain tumor without any significantly successful treatments to date. Tumor antigen-targeted immunotherapy platforms including peptide and dendritic cell (DC) vaccines, have extended survival in hematologic malignancies. The relatively "cold" tumor immune microenvironment and heterogenous nature of glioblastoma have proven to be major limitations to translational application and efficacy of DC vaccines.
View Article and Find Full Text PDFImportance: Radiation necrosis (RN) is a rare but serious adverse effect following treatment with radiation therapy. No standard of care exists for the management of RN, and efforts to prevent and treat RN are limited by a lack of insight into the pathomechanics and molecular drivers of RN. This case series describes the outcomes of treatment with bevacizumab (BV) in two primary CNS lymphoma (PCNSL) patients who developed symptomatic biopsy-proven RN after whole brain radiation (WBRT) with a stereotactic radiosurgery (SRS) boost.
View Article and Find Full Text PDFOur group has employed methodologies for effective ex vivo generation of dendritic cell (DC) vaccines for patients with primary malignant brain tumors. In order to reliably produce the most potent, most representational vaccinated DC that will engender an antitumor response requires the ability to orchestrate multiple methodologies that address antigen cross-presentation, T-cell costimulation and polarization, and migratory capacity. In this chapter, we describe a novel method for augmenting the immunogenicity and migratory potential of DCs for their use as vaccines.
View Article and Find Full Text PDFImmunotherapy has revolutionized treatment for many hard-to-treat cancers but has yet to produce significant improvement in outcomes for patients with glioblastoma. This reflects the multiple and unique mechanisms of immune evasion and escape in this highly heterogeneous tumor. Glioblastoma engenders profound local and systemic immunosuppression and is remarkably effective at inducing T-cell dysfunction, posing a challenge to any immunotherapy-based approach.
View Article and Find Full Text PDFDespite standard of care for glioblastoma, including gross total resection, high-dose radiation, and dose-limited chemotherapy, this tumor remains one of the most aggressive and therapeutically challenging. The relatively small number of patients with this diagnosis compared with more common solid tumors in clinical trials commits new glioblastoma therapies to testing in small, underpowered, nonrandomized settings. Among approximately 200 registered glioblastoma trials identified between 2005 and 2015, nearly half were single-arm studies with sample sizes not exceeding 50 patients.
View Article and Find Full Text PDFMyxopapillary ependymomas are a slow-growing, grade I type glial tumor in the lumbosacral region. More rarely, they can present as extradural, subcutaneous sacrococcygeal, or perisacral masses, and it is under these circumstances that they are more likely to spread. Here, we report the presentation of a sacrococcygeal mass in patient that was initially resected confirming extradural myxopapillary ependymoma.
View Article and Find Full Text PDFEfficacy of dendritic cell (DC) cancer vaccines is classically thought to depend on their antigen-presenting cell (APC) activity. Studies show, however, that DC vaccine priming of cytotoxic T lymphocytes (CTLs) requires the activity of endogenous DCs, suggesting that exogenous DCs stimulate antitumor immunity by transferring antigens (Ags) to endogenous DCs. Such Ag transfer functions are most commonly ascribed to monocytes, implying that undifferentiated monocytes would function equally well as a vaccine modality and need not be differentiated to DCs to be effective.
View Article and Find Full Text PDFThe number of patients who develop metastatic brain lesions is increasing as the diagnosis and treatment of systemic cancers continues to improve, resulting in longer patient survival. The role of surgery in the management of brain metastasis (BM), particularly multiple and recurrent metastases, remains controversial and continues to evolve. However, with appropriate patient selection, outcomes after surgery are typically favorable.
View Article and Find Full Text PDFThe incidence of renal-cell carcinoma has been increasing each year, with nearly one third of new cases diagnosed at advanced or metastatic stage. The advent of targeted therapies for metastatic renal-cell carcinoma (mRCC) has underscored the need to subtype tumors according to tumor-immune expression profiles that may more reliably predict treatment outcomes. Over the past 2 decades, several vascular endothelial growth factor (VEGF) and tyrosine kinase inhibitors have been the mainstay for first- and second-line treatment of mRCC.
View Article and Find Full Text PDFAdoptive transfer of T cells expressing chimeric antigen receptors (CARs) is an effective immunotherapy for B-cell malignancies but has failed in some solid tumors clinically. Intracerebral tumors may pose challenges that are even more significant. In order to devise a treatment strategy for patients with glioblastoma (GBM), we evaluated CARs as a monotherapy in a murine model of GBM.
View Article and Find Full Text PDFMedian survival for glioblastoma (GBM) remains <15 months. Human cytomegalovirus (CMV) antigens have been identified in GBM but not normal brain, providing an unparalleled opportunity to subvert CMV antigens as tumor-specific immunotherapy targets. A recent trial in recurrent GBM patients demonstrated the potential clinical benefit of adoptive T-cell therapy (ATCT) of CMV phosphoprotein 65 (pp65)-specific T cells.
View Article and Find Full Text PDFExpert Rev Clin Immunol
November 2017
Immunotherapy embodies any approach that manipulates the immune system for therapeutic benefit. In this regard, various clinical trials have employed direct vaccination with patient-specific dendritic cells or adoptive T cell therapy to target highly aggressive tumors. Both modalities have demonstrated great specificity, an advantage that is unmatched by other treatment strategies.
View Article and Find Full Text PDFPatients with glioblastoma have less than 15-month median survival despite surgical resection, high-dose radiation, and chemotherapy with temozolomide. We previously demonstrated that targeting cytomegalovirus pp65 using dendritic cells (DC) can extend survival and, in a separate study, that dose-intensified temozolomide (DI-TMZ) and adjuvant granulocyte macrophage colony-stimulating factor (GM-CSF) potentiate tumor-specific immune responses in patients with glioblastoma. Here, we evaluated pp65-specific cellular responses following DI-TMZ with pp65-DCs and determined the effects on long-term progression-free survival (PFS) and overall survival (OS).
View Article and Find Full Text PDFHumans consider themselves discrete autonomous organisms, but recent research is rapidly strengthening the appreciation that associated microorganisms make essential contributions to human health and well being. Each person is inhabited and also surrounded by his/her own signature microbial cloud. A low diversity of microorganisms is associated with a plethora of diseases, including allergy, diabetes, obesity, arthritis, inflammatory bowel diseases, and even neuropsychiatric disorders.
View Article and Find Full Text PDFIntroduction: Immunotherapy for brain cancer has evolved dramatically over the past decade, owed in part to our improved understanding of how the immune system interacts with tumors residing within the central nervous system (CNS). Glioblastoma (GBM), the most common primary malignant brain tumor in adults, carries a poor prognosis (<15 months) and only few advances have been made since the FDA's approval of temozolomide (TMZ) in 2005. Importantly, several immunotherapies have now entered patient trials based on promising preclinical data, and recent studies have shed light on how GBM employs a slew of immunosuppressive mechanisms that may be targeted for therapeutic gain.
View Article and Find Full Text PDFMessenger RNA (mRNA)-transfected dendritic cell (DC) vaccines have been shown to be a powerful modality for eliciting antitumor immune responses in mice and humans; however, their application has not been fully optimized since many of the factors that contribute to their efficacy remain poorly understood. Work stemming from our laboratory has recently demonstrated that preconditioning the vaccine site with a recall antigen prior to the administration of a dendritic cell vaccine creates systemic recall responses and resultantly enhances dendritic cell migration to the lymph nodes with improved antitumor efficacy. This chapter describes the generation of murine mRNA-transfected DC vaccines, as well as a method for vaccine site preconditioning with protein antigen formulations that create potent recall responses.
View Article and Find Full Text PDFAfter stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is an extremely malignant brain tumor for which current therapies do little to remedy. Despite aggressive treatment with surgery, radiation therapy, and chemotherapy, tumors inevitably recur as a direct consequence of the infiltrative nature of GBM. The poor prognosis of patients with GBM underscores the clear and urgent need for more precise and potent therapies.
View Article and Find Full Text PDFExpert Opin Biol Ther
January 2015
Introduction: Patients with primary glioblastoma (GBM) have a dismal prognosis despite standard therapy, which can induce potentially deleterious side effects. Arming the immune system is an alternative therapeutic approach, as its cellular effectors and inherent capacity for memory can be utilized to specifically target invasive tumor cells, while sparing collateral damage to otherwise healthy brain parenchyma.
Areas Covered: Active immunotherapy is aimed at eliciting a specific immune response against tumor antigens.
Introduction: Malignant gliomas (MGs) represent the most common primary brain tumors in adults, the most deadly of which is grade IV glioblastoma. Patients with glioblastoma undergoing current standard-of-care therapy have a median survival of 12 - 15 months.
Areas Covered: Over the past 25 years, there have been modest advancements in the treatment of MGs.
We report a unique case of a dural-based inflammatory pseudotumor (IPT) arising in the left cavernous sinus of a patient with a history of juvenile Still's disease. The patient presented with hemi-facial paresthesias, dull, constant headaches, and transient episodes of sharp pain along the temporalis region. Treatment with oral steroid therapy resulted in complete regression of the lesion and accompanied neuralgia symptoms.
View Article and Find Full Text PDFSurgery remains one of the oldest and still most important forms of treatment for patients with glioma. The advantages of surgical resection for glioma must be balanced with the potential of operative morbidity to surrounding eloquent brain. To that end, advances in functional brain mapping allow for safer operations with more aggressive surgical resections.
View Article and Find Full Text PDF