Herein, we compared the developmental maturity of the cranium, limbs, and feeding apparatus in a perinatal common vampire bat relative to its mother. In addition, we introduce a method for combining two computed tomographic imaging techniques to three-dimensionally reconstruct endocasts in poorly ossified crania. The Desmodus specimens were scanned using microcomputed tomography (microCT) and diffusible iodine-based contrast-enhanced CT to image bone and soft tissues.
View Article and Find Full Text PDFAnat Rec (Hoboken)
September 2020
Previous descriptive work on deciduous dentition of primates has focused disproportionately on great apes and humans. To address this bias in the literature, we studied 131 subadult nonhominoid specimens (including 110 newborns) describing deciduous tooth morphology and assessing maximum hydroxyapatite density (MHD). All specimens were CT scanned at 70 kVp and reconstructed at 20.
View Article and Find Full Text PDFSeveral new fossil specimens from the Cambay Shale Formation at Tadkeshwar Lignite Mine in Gujarat document the presence of two previously unknown early Eocene primate species from India. A new species of Asiadapis is named based on a jaw fragment preserving premolars similar in morphology to those of A. cambayensis but substantially larger.
View Article and Find Full Text PDFOur knowledge of muscle anatomy and physiology in vertebrates has increased dramatically over the last two-hundred years. Today, much is understood about how muscles contract and about the functional meaning of muscular variation at multiple scales. Progress in muscle anatomy has profited from the availability of broad comparative samples, advances in microscopy have permitted comparisons at increasingly finer scales, and progress in muscle physiology has profited from many carefully designed and executed experiments.
View Article and Find Full Text PDFObjectives: The disappearance of the North American plesiadapoids (stem primates, or plesiadapiforms) in the latest Paleocene has been attributed to competition with rodents over dietary resources. This study compares molar morphology of plesiadapoids and early rodents to assess whether all taxa were adapted to consuming foods of the same structural properties with similar mechanical efficacy.
Materials And Methods: Micro-CT scans of second mandibular molars (M2 s) of plesiadapoids (n = 181) and ischyromyid (early fossil) rodents (n = 13) were evaluated using Dirichlet normal energy (DNE), a dental topographic metric that quantifies the curvature of a tooth's occlusal surface, independent of the orientation of the occlusal plane; this metric can be used to infer diet.