In neurodegenerative diseases, it remains unclear why certain brain regions are selectively vulnerable to protein aggregation. In transgenic mice expressing human A53T α-synuclein, the brainstem and spinal cord develop the most prominent α-synuclein inclusions which correlate with age-dependent motor dysfunction. Herein we present the novel finding that this selective aggregation is in part dependent on the inability of chaperone-mediated autophagy (CMA) to effectively degrade α-synuclein in these brain regions.
View Article and Find Full Text PDFWhile numerous hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of neurodegenerative diseases, the theory of oxidative stress has received considerable support. Although many correlations have been established and encouraging evidence has been obtained, conclusive proof of causation for the oxidative stress hypothesis is lacking and potential cures have not emerged. Therefore it is likely that other factors, possibly in coordination with oxidative stress, contribute to neuron death.
View Article and Find Full Text PDFThe behavioral manifestations of autism, including reduced sociability (reduced tendency to seek social interaction), may be related to underdevelopment of the corpus callosum (CC). The BALB/cJ inbred mouse strain is a useful model system for testing the relationship between reduced sociability and CC underdevelopment. BALB/cJ mice show low levels of sociability, on average, but substantial intrastrain variability in sociability, as well as striking variability in CC development.
View Article and Find Full Text PDF