Polygenic Risk Scores (PRS) are statistical methods estimating part of an individual's genetic susceptibility to various disease phenotypes. Their potential clinical applications to enhance the prediction, prevention, and risk management of complex conditions motivate current research efforts worldwide. While a growing body of literature has highlighted the scientific and ethical limitations of PRS, the technology's clinical translation will present both opportunities and challenges for the stakeholders involved.
View Article and Find Full Text PDFUnsupervised learning, particularly clustering, plays a pivotal role in disease subtyping and patient stratification, especially with the abundance of large-scale multi-omics data. Deep learning models, such as variational autoencoders (VAEs), can enhance clustering algorithms by leveraging inter-individual heterogeneity. However, the impact of confounders-external factors unrelated to the condition, e.
View Article and Find Full Text PDFGenetic ancestry plays a major role in pharmacogenomics, and a deeper understanding of the genetic diversity among individuals holds immerse promise for reshaping personalized medicine. In this pivotal study, we have conducted a large-scale genomic analysis of 1,136 pharmacogenomic variants employing machine learning algorithms on 3,714 individuals from publicly available datasets to assess the risk proximity of experiencing drug-related adverse events. Our findings indicate that Admixed Americans and Europeans have demonstrated a higher risk of experiencing drug toxicity, whereas individuals with East Asian ancestry and, to a lesser extent, Oceanians displayed a lower risk proximity.
View Article and Find Full Text PDFMost heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs.
View Article and Find Full Text PDFIndividual Specific Networks (ISNs) are a tool used in computational biology to infer Individual Specific relationships between biological entities from omics data. ISNs provide insights into how the interactions among these entities affect their respective functions. To address the scarcity of solutions for efficiently computing ISNs on large biological datasets, we present ISN-tractor, a data-agnostic, highly optimized Python library to build and analyse ISNs.
View Article and Find Full Text PDFIntroduction: In the evolving healthcare landscape, precision medicine's rise necessitates adaptable doctoral training. The European Union has recognized this and promotes the development of international, training-focused programmes called Innovative Training Networks (ITNs). In this article, we introduce TranSYS, an ITN focused on educating the next generation of precision medicine researchers.
View Article and Find Full Text PDFDebates about the prospective clinical use of polygenic risk scores (PRS) have grown considerably in the last years. The potential benefits of PRS to improve patient care at individual and population levels have been extensively underlined. Nonetheless, the use of PRS in clinical contexts presents a number of unresolved ethical challenges and consequent normative gaps that hinder their optimal implementation.
View Article and Find Full Text PDFThe seasonal influenza vaccine remains one of the vital recommended infection control measures for the elderly with chronic illnesses. We investigated the immunogenicity of a single dose of influenza vaccine in 123 seronegative participants and classified them into four distinct groups, determined by the promptness of vaccine response, the longevity of humoral immunity, and the likelihood of exhibiting cross-reactivity. Subsequently, we used transcriptional profiling and differential gene expression analysis to identify potential genes directly associated with the robust response to the vaccine.
View Article and Find Full Text PDFThe immune response-gut microbiota interaction is implicated in various human diseases, including cancer. Identifying the link between the gut microbiota and systemic inflammatory markers and their association with cancer will be important for our understanding of cancer etiology. The current study was performed on 8090 participants from the population-based Rotterdam study.
View Article and Find Full Text PDFMulti-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs).
View Article and Find Full Text PDFMost heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs.
View Article and Find Full Text PDFPersonalised cancer screening before therapy paves the way toward improving diagnostic accuracy and treatment outcomes. Most approaches are limited to a single data type and do not consider interactions between features, leaving aside the complementary insights that multimodality and systems biology can provide. In this project, we demonstrate the use of graph theory for data integration via individual networks where nodes and edges are individual-specific.
View Article and Find Full Text PDFMolecular profiling technologies, such as RNA sequencing, offer new opportunities to better discover and understand the molecular networks involved in complex biological processes. Clinically important variations of diseases, or responses to treatment, are often reflected, or even caused, by the dysregulation of molecular interaction networks specific to particular network regions. In this work, we propose the package PLEX.
View Article and Find Full Text PDFBackground: The influenza vaccine administrated every year is a recommended infection control procedure for individuals above the age of six months. However, the effectiveness of repeated annual vaccination is still an active research topic. Therefore, we investigated the vaccine immunogenicity in two independent groups: previously vaccinated versus non-vaccinated individuals at three time points; prior vaccination, one week and three months post vaccination.
View Article and Find Full Text PDFLongitudinal analysis of multivariate individual-specific microbiome profiles over time or across conditions remains dauntin. Most statistical tools and methods that are available to study microbiomes are based on cross-sectional data. Over the past few years, several attempts have been made to model the dynamics of bacterial species over time or across conditions.
View Article and Find Full Text PDFMulti-view data offer advantages over single-view data for characterizing individuals, which is crucial in precision medicine toward personalized prevention, diagnosis, or treatment follow-up. Here, we develop a network-guided multi-view clustering framework named netMUG to identify actionable subgroups of individuals. This pipeline first adopts sparse multiple canonical correlation analysis to select multi-view features possibly informed by extraneous data, which are then used to construct individual-specific networks (ISNs).
View Article and Find Full Text PDFIndividual-specific networks, defined as networks of nodes and connecting edges that are specific to an individual, are promising tools for precision medicine. When such networks are biological, interpretation of functional modules at an individual level becomes possible. An under-investigated problem is relevance or "significance" assessment of each individual-specific network.
View Article and Find Full Text PDFLeveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power.
View Article and Find Full Text PDFIn this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR's future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities.
View Article and Find Full Text PDFMany problems in life sciences can be brought back to a comparison of graphs. Even though a multitude of such techniques exist, often, these assume prior knowledge about the partitioning or the number of clusters and fail to provide statistical significance of observed between-network heterogeneity. Addressing these issues, we developed an unsupervised workflow to identify groups of graphs from reliable network-based statistics.
View Article and Find Full Text PDFA reoccurring issue in neuroepigenomic studies, especially in the context of neurodegenerative disease, is the use of (heterogeneous) bulk tissue, which generates noise during epigenetic profiling. A workable solution to this issue is to quantify epigenetic patterns in individually isolated neuronal cells using laser capture microdissection (LCM). For this purpose, we established a novel approach for targeted DNA methylation profiling of individual genes that relies on a combination of LCM and limiting dilution bisulfite pyrosequencing (LDBSP).
View Article and Find Full Text PDFSNP-based information is used in several existing clustering methods to detect shared genetic ancestry or to identify population substructure. Here, we present a methodology, called IPCAPS for unsupervised population analysis using iterative pruning. Our method, which can capture fine-level structure in populations, supports ordinal data, and thus can readily be applied to SNP data.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is categorized as the leading cause of cancer mortality worldwide. However, its predictive markers for long-term survival are not well known. It is interesting to delineate individual-specific perturbed genes when comparing long-term (LT) and short-term (ST) PDAC survivors and integrate individual- and group-based transcriptome profiling.
View Article and Find Full Text PDFMotivation: The outbreak of coronavirus health issues caused by COVID-19(SARS-CoV-2) creates a global threat to public health. Therefore, there is a need for effective remedial measures using existing and approved therapies with proven safety measures has several advantages. Dexamethasone (Pubchem ID: CID0000005743), baricitinib(Pubchem ID: CID44205240), remdesivir (PubchemID: CID121304016) are three generic drugs that have demonstrated in-vitro high antiviral activity against SARS-CoV-2.
View Article and Find Full Text PDF