Soluble guanylate cyclase (sGC), the primary mediator of nitric oxide (NO) bioactivity, exists as reduced (NO-sensitive) and oxidized (NO-insensitive) forms. We tested the hypothesis that the cardiovascular protective effects of NO-insensitive sGC activation would be potentiated under conditions of oxidative stress compared to those of NO-sensitive sGC stimulation. The cardiovascular effects of the NO-insensitive sGC activator GSK2181236A [a low, non-depressor dose, and a high dose which lowered mean arterial pressure (MAP) by 5-10 mmHg] and those of equi-efficacious doses of the NO-sensitive sGC stimulator BAY 60-4552 were assessed in (1) Sprague Dawley rats during coronary artery ischemia/reperfusion (I/R) and (2) spontaneously hypertensive stroke prone rats (SHR-SP) on a high salt/fat diet (HSFD).
View Article and Find Full Text PDFThe evidence is compelling for a role of inflammation in cardiovascular diseases; however, the chronic use of anti-inflammatory drugs for these indications has been disappointing. The recent study compares the effects of two anti-inflammatory agents [cyclooxygenase 2 (COX2) and p38 inhibitors] in a model of cardiovascular disease. The vascular, renal, and cardiac effects of 4-(4-methylsulfonylphenyl)-3-phenyl-5H-furan-2-one (rofecoxib; a COX2 inhibitor) and 6-{5-[(cyclopropylamino)carbonyl]-3-fluoro-2-methylphenyl}-N-(2,2-dimethylpropyl)-3-pyridinecarboxamide [GSK-AHAB, a selective p38 mitogen-activated protein kinase (MAPK) inhibitor], were examined in the spontaneously hypertensive stroke-prone rat (SHR-SP).
View Article and Find Full Text PDFPreviously, it was shown that selective deletion of peroxisome proliferator activated receptor delta (PPARdelta) in the heart resulted in a cardiac lipotoxicity, hypertrophy, and heart failure. The aim of the present study was to determine the effects of chronic and selective pharmacological activation of PPARdelta in a model of congestive heart failure. PPARdelta-specific agonist treatment (GW610742X at 30 and 100 mg/kg/day for 6-9 weeks) was initiated immediately postmyocardial infarction (MI) in Sprague-Dawley rats.
View Article and Find Full Text PDFObjective: Evidence suggests important relationships among chronic inflammatory processes, endothelial dysfunction, hypertension and target organ damage. The present study examined the effects of chronic treatment with an anti-inflammatory p38 mitogen-activated protein kinase (MAPK) inhibitor (SB-239063AN) in the N(omega)-nitro-l-arginine methyl ester-treated spontaneously hypertensive rat (SHR+l-NAME) model of severe hypertension and accelerated target organ damage.
Methods: SHRs were divided into control (n=16), l-NAME (n=26) and l-NAME+SB-239063AN (n=24) groups.
Naunyn Schmiedebergs Arch Pharmacol
October 2004
Urotensin-II (U-II), the most potent mammalian vasoconstrictor identified, and its receptor, UT, exhibits increased expression in cardiac tissue and plasma in congestive heart failure (CHF) patients. Cardiomyocyte hypertrophy is primarily responsible for increased myocardial mass associated with cardiac injury. Neurohumoral factors such as angiotensin-II, endothelin-1, catecholamines, and inflammatory cytokines are thought to mediate this response.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2004
Urotensin-II, a potent mammalian vasoconstrictor, may play a role in the etiology of essential hypertension. However, a species suitable for assessing such a role, one where a "classical" systemic hypertensive response (increase in mean blood pressure and systemic vascular resistance) is observed following bolus i.v.
View Article and Find Full Text PDF