Given that gene duplication is a major driving force of evolutionary change and the key mechanism underlying the emergence of new genes and biological processes, this study sought to use a novel genome-wide approach to identify genes that have undergone lineage-specific duplications or contractions among several hominoid lineages. Interspecies cDNA array-based comparative genomic hybridization was used to individually compare copy number variation for 39,711 cDNAs, representing 29,619 human genes, across five hominoid species, including human. We identified 1,005 genes, either as isolated genes or in clusters positionally biased toward rearrangement-prone genomic regions, that produced relative hybridization signals unique to one or more of the hominoid lineages.
View Article and Find Full Text PDFHigh-alcohol-sensitive (HAS) and low-alcohol-sensitive (LAS) rats were bred for sensitivity and insensitivity, respectively, to the sedative/hypnotic effects of ethanol. These rats also display differential sensitivity to the depressant effects of locally applied ethanol on cerebellar Purkinje neurons in vivo. We have found that LAS animals exhibit a greater influence of endogenous beta-adrenergic activity on neuronal responses to gamma-aminobutyric acid (GABA) and ethanol than do HAS animals.
View Article and Find Full Text PDFBackground: The identification of genes underlying complex traits has been aided by quantitative trait locus (QTL) mapping approaches, which in turn have benefited from advances in mammalian genome research. Most recently, whole-genome draft sequences and assemblies have been generated for mouse strains that have been used for a large fraction of QTL mapping studies. Here we show how such strain-specific mouse genome sequence databases can be used as part of a high-throughput pipeline for the in silico discovery of gene-coding variations within murine QTLs.
View Article and Find Full Text PDF