Publications by authors named "Kristaq Gazeli"

This study presents the detailed characterization of a magnetron-based Ar-N2 plasma discharge used to sputter a liquid Ga target for the deposition of gallium nitride (GaN) thin films. By utilizing in situ diagnostic techniques including optical emission spectroscopy and microwave interferometry, we determine different temperatures (rotational and vibrational of N2 molecules, and electronic excitation of Ar atoms) and electron density, respectively. Beyond providing insights into fundamental plasma physics, our research establishes a significant correlation between gas-phase dynamics, particularly those of gallium atoms (flux and average energy at the substrate) and deposited GaN thin film properties (growth rate and crystalline fraction).

View Article and Find Full Text PDF

Anti-angiogenic (AA) treatments have received significant research interest due to the key role of angiogenesis in cancer progression. AA agents can have a strong effect on cancer regression, by blocking new vessels and reducing the density of the existing vasculature. Moreover, in a process termed vascular normalisation, AA drugs can improve the abnormal structure and function of the tumour vasculature, enhancing the delivery of chemotherapeutics to the tumour site.

View Article and Find Full Text PDF

The effectiveness of electrochemotherapy (ECT) in local eradication of tumours in human and veterinary medicine has been proven. ECT consists of increasing the uptake of cytotoxic drugs by means of pulsed electric fields (PEFs) that transiently permeabilise the cell membrane. Still, this tumour treatment includes some drawbacks that are linked to the characteristics of the intense electric pulses (EPs) used.

View Article and Find Full Text PDF

The understanding of plasma-liquid interactions is of major importance, not only in physical chemistry, chemical engineering and polymer science, but in biomedicine as well as to better control the biological processes induced on/in biological samples by Cold Atmospheric Plasmas (CAPs). Moreover, plasma-air interactions have to be particularly considered since these CAPs propagate in the ambient air. Herein, we developed a helium-based CAP setup equipped with a shielding-gas device, which allows the control of plasma-air interactions.

View Article and Find Full Text PDF