Publications by authors named "Kristan S Worthington"

Tissue repair is often impaired in pathological states, highlighting the need for innovative wound-healing technologies. This study introduces composite hyaluronic acid gas-entrapping materials (GEMs) delivering carbon monoxide (CO) to promote wound healing in pigs. These composite materials facilitate burst release followed by sustained release of CO over 48 h.

View Article and Find Full Text PDF
Article Synopsis
  • * The study aimed to create conditionally immortalized RPCs from human induced pluripotent stem cells (iPSCs) using a Tet-On system, which increased cell proliferation but negatively impacted RPC identity.
  • * Findings show that the process of immortalization led to irreversible de-differentiation of RPCs despite attempts to revert changes, highlighting the need for better strategies to balance cell growth and differentiation for effective RPC use in therapies.
View Article and Find Full Text PDF

The use of photopolymerization is expanding across a multitude of biomedical applications, from drug delivery to bioprinting. Many of these current and emerging photopolymerization systems employ visible light, as motivated by safety and energy efficiency considerations. However, the "library" of visible light initiators is limited compared with the wealth of options available for UV polymerization.

View Article and Find Full Text PDF

Retinal degenerative diseases are a major cause of blindness involving the dysfunction of photoreceptors, retinal pigmented epithelium (RPE), or both. A promising treatment approach involves replacing these cells via surgical transplantation, and previous work has shown that cell delivery scaffolds are vital to ensure sufficient cell survival. Thus, identifying scaffold properties that are conducive to cell viability and maturation (such as suitable material and mechanical properties) is critical to ensuring a successful treatment approach.

View Article and Find Full Text PDF

Engineered scaffolds are commonly used to assist in cellular transplantations, providing crucial support and specific architecture for a variety of tissue engineering applications. Photopolymerization as a fabrication technique for cell scaffolds enables precise spatial and temporal control of properties and structure. One simple technique to achieve a two-dimensional structure is the use of a patterned photomask, which results in regionally selective photo-cross-linking.

View Article and Find Full Text PDF
Article Synopsis
  • - The loss of photoreceptor cells is a key issue in inherited retinal disorders like age-related macular degeneration and retinitis pigmentosa, necessitating cell replacement to restore vision.
  • - Induced pluripotent stem cells (iPSCs) are ideal for this purpose as they can be derived from the same patient, reducing the risk of immune rejection.
  • - A study using biodegradable polycaprolactone (PCL) scaffolds showed successful transplantation of iPSC-derived retinal progenitor cells in a rat model, with no observed toxicity or tumor formation, paving the way for future human trials.
View Article and Find Full Text PDF

Regenerative engineering strategies for the oral mucoperiosteum, as may be needed following surgeries, such as cleft palate repair and tumor resection, are underdeveloped compared with those for maxillofacial bone. However, critical-size tissue defects left to heal by secondary intention can lead to complications, such as infection, fistula formation, scarring, and midface hypoplasia. This review describes current clinical practice for replacing mucoperiosteal tissue, including autografts and allografts.

View Article and Find Full Text PDF
Article Synopsis
  • Emerging treatment strategies for retinal degeneration focus on using supportive scaffolds to replace lost photoreceptors, but a complete set of design constraints is still needed.
  • This study utilized photocrosslinked poly(ethylene glycol) dimethacrylate (PEGDMA) to explore how scaffold stiffness influences surgical handling during transplantation.
  • Results showed scaffolds with shear moduli above 35 kPa were effective for transplantation, while those below this threshold were too fragile; however, performance varied for scaffolds above 800 kPa.
View Article and Find Full Text PDF

The identification of >100 genes causing inherited retinal degeneration and the promising results of recent gene augmentation trials have led to an increase in the number of studies investigating the preclinical efficacy of viral-mediated gene transfer. Despite success using adeno-associated viruses, many disease-causing genes, such as or , are too large to fit into these vectors. One option for large gene delivery is the family of integration-deficient helper-dependent adenoviruses (HDAds), which efficiently transduce postmitotic neurons.

View Article and Find Full Text PDF

Widely used approaches for retinal disease modeling and therapeutic testing can be augmented by using tissue-engineered scaffolds with a precise 3-dimensional structure. However, the materials currently used for these scaffolds are poorly matched to the biochemical and mechanical properties of the retina. Here, we create biopolymer-based scaffolds with a structure that is amenable to retinal tissue engineering and modeling.

View Article and Find Full Text PDF

Cell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform.

View Article and Find Full Text PDF

Geometric topographies are known to influence cellular differentiation toward specific phenotypes, but to date the range of features and type of substrates that can be easily fabricated to study these interactions is somewhat limited. In this study, an emerging technology, two-photon polymerization, is used to print topological patterns with varying feature-size and thereby study their effect on cellular differentiation. This technique offers rapid manufacturing of topographical surfaces with good feature resolution for shapes smaller than 3 µm.

View Article and Find Full Text PDF

Controlled drug delivery systems have been utilized to enhance the therapeutic effects of many drugs by delivering drugs in a time-dependent and sustained manner. Here, with the aid of 3D printing technology, drug delivery devices were fabricated and tested using a model drug (fluorophore: rhodamine B). Poly(ethylene glycol) dimethacrylate (PEGDMA) devices were fabricated using a two-photon polymerization (TPP) system and rhodamine B was homogenously entrapped inside the polymer matrix during photopolymerization.

View Article and Find Full Text PDF

Degradable polymers are integral components in many biomedical polymer applications. The ability of these materials to decompose in situ has become a critical component for tissue engineering, allowing scaffolds to guide cell and tissue growth while facilitating gradual regeneration of native tissue. The objective of this work is to understand the role of prepolymer molecular weight and functionality of photocurable poly(caprolactone) (PCL) in determining reaction kinetics, mechanical properties, polymer degradation, biocompatibility, and suitability for stereolithography.

View Article and Find Full Text PDF

The purpose of this study was to devise a strategy for the derivation of corneal endothelial cells (CEnCs) from adult fibroblast-derived induced pluripotent stem cells (iPSCs). IPSCs were generated from an adult human with normal ocular history via expression of , , and Neural crest cells (NCCs) were differentiated from iPSCs via addition of CHIR99021 and SB4315542. NCCs were driven toward a CEnC fate via addition of B27, PDGF-BB and DKK-2 to CEnC media.

View Article and Find Full Text PDF

Gene correction is a valuable strategy for treating inherited retinal degenerative diseases, a major cause of irreversible blindness worldwide. Single gene defects cause the majority of these retinal dystrophies. Gene augmentation holds great promise if delivered early in the course of the disease, however, many patients carry mutations in genes too large to be packaged into adeno-associated viral vectors and some, when overexpressed via heterologous promoters, induce retinal toxicity.

View Article and Find Full Text PDF

Juvenile neuronal ceroid lipofuscinosis (Batten disease) is a rare progressive neurodegenerative disorder caused by mutations in . Patients present with early-onset retinal degeneration, followed by epilepsy, progressive motor deficits, cognitive decline, and premature death. Approximately 85% of individuals with Batten disease harbor at least one allele containing a 1.

View Article and Find Full Text PDF

Unlabelled: Endothelial cells (ECs) of the choriocapillaris are one of the first cell types lost during age-related macular degeneration (AMD), and cell replacement therapy is currently a very promising option for patients with advanced AMD. We sought to develop a reliable method for the production of human choroidal extracellular matrix (ECM) scaffolds, which will allow for the study of choroidal EC (CEC) replacement strategies in an environment that closely resembles the native tissue. Human RPE/choroid tissue was treated sequentially with Triton X-100, SDS, and DNase to remove all native cells.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the Western world. Although, the majority of stem cell research to date has focused on production of retinal pigment epithelial (RPE) and photoreceptor cells for the purpose of evaluating disease pathophysiology and cell replacement, there is strong evidence that the choroidal endothelial cells (CECs) that form the choriocapillaris vessels are the first to be lost in this disease. As such, to accurately evaluate disease pathophysiology and develop an effective treatment, production of patient-specific, stem cell-derived CECs will be required.

View Article and Find Full Text PDF

Unlabelled: Recent advances in induced pluripotent stem cell (iPSC) technology have paved the way for the production of patient-specific neurons that are ideal for autologous cell replacement for treatment of neurodegenerative diseases. In the case of retinal degeneration and associated photoreceptor cell therapy, polymer scaffolds are critical for cellular survival and integration; however, prior attempts to materialize this concept have been unsuccessful in part due to the materials' inability to guide cell alignment. In this work, we used two-photon polymerization to create 180μm wide non-degradable prototype photoreceptor scaffolds with varying pore sizes, slicing distances, hatching distances and hatching types.

View Article and Find Full Text PDF

Recent advances in drug delivery and sensing devices for in situ applications are limited by the diffusion-limiting foreign body response of fibrous encapsulation. In this study, we fabricated prevascularized synthetic device ports to help mitigate this limitation. Membranes with rectilinear arrays of square pores with widths ranging from 40 to 200 μm were created using materials (50 μm thick double-sided polished silicon) and processes (photolithography and directed reactive ion etching) common in the manufacturing of microfabricated sensors.

View Article and Find Full Text PDF

The development of effective tissue engineering materials requires careful consideration of several properties beyond biocompatibility, including permeability and mechanical stiffness. While surfactant templating has been used for over a decade to control the physical properties of photopolymer materials, the potential benefit of this technique with regard to biomaterials has yet to be fully explored. Herein we demonstrate that surfactant templating can be used to tune the water uptake and compressive modulus of photo-cross-linked chitosan hydrogels.

View Article and Find Full Text PDF

Purpose: Cell replacement therapy for the treatment of retinal degeneration is an increasingly feasible approach, but one that still requires optimization of the transplantation strategy. To this end, various polymer substrates can increase cell survival and integration, although the effect of their pore size on cell behavior, particularly differentiation, has yet to be explored.

Methods: Salt crystals of varying known size were used to impart structure to poly(lactic-co-glycolic acid) (PLGA) scaffolds by a salt leaching/solvent evaporation process.

View Article and Find Full Text PDF

Sub-retinal implantation of foreign materials is becoming an increasingly common feature of novel therapies for retinal dysfunction. The ultimate compatibility of implants depends not only on their in vitro chemical compatibility, but also on how well the mechanical properties of the material match those of the native tissue. In order to optimize the mechanical properties of retinal implants, the mechanical properties of the mammalian retina itself must be carefully characterized.

View Article and Find Full Text PDF