Publications by authors named "Kristal Gant"

High-grade serous ovarian cancer (HGSOC) is the predominant subtype of ovarian cancer (OC), occurring in more than 80% of patients diagnosed with this malignancy. Histological and genetic analysis have confirmed the secretory epithelial of the fallopian tube (FT) as a major site of origin of HGSOC. Although there have been significant strides in our understanding of this disease, early stage detection and diagnosis are still rare.

View Article and Find Full Text PDF

Immune checkpoint therapy (ICT) has dramatically altered clinical outcomes for cancer patients and conferred durable clinical benefits, including cure in a subset of patients. Varying response rates across tumor types and the need for predictive biomarkers to optimize patient selection to maximize efficacy and minimize toxicities prompted efforts to unravel immune and non-immune factors regulating the responses to ICT. This review highlights the biology of anti-tumor immunity underlying response and resistance to ICT, discusses efforts to address the current challenges with ICT, and outlines strategies to guide the development of subsequent clinical trials and combinatorial efforts with ICT.

View Article and Find Full Text PDF

The collagen architecture in high grade serous ovarian cancer (HGSOC) is highly remodeled compared to the normal ovary and the fallopian tubes (FT). We previously used Second Harmonic Generation (SHG) microscopy and machine learning to classify the changes in collagen fiber morphology occurring in serous tubal intraepithelial carcinoma (STIC) lesions that are concurrent with HGSOC. We now extend these studies to examine collagen remodeling in pure p53 signatures, STICs and normal regions in tissues that have no concurrent HGSOC.

View Article and Find Full Text PDF

The majority of high-grade serous ovarian cancers originate in the fallopian tubes, however, the corresponding structural changes in the extracellular matrix (ECM) have not been well-characterized. This information could provide new insight into the carcinogenesis and provide the basis for new diagnostic tools. We have previously used the collagen-specific Second Harmonic Generation (SHG) microscopy to probe collagen fiber alterations in high-grade serous ovarian cancer and in other ovarian tumors, and showed they could be uniquely identified by machine learning approaches.

View Article and Find Full Text PDF

Background: Sex differences in idiopathic pulmonary fibrosis (IPF) suggest a protective role for estrogen (E2); however, mechanistic studies in animal models have produced mixed results. Reports using cell lines have investigated molecular interactions between transforming growth factor beta1 (TGF-β1) and estrogen receptor (ESR) pathways in breast, prostate, and skin cells, but no such interactions have been described in human lung cells. To address this gap in the literature, we investigated a role for E2 in modulating TGF-β1-induced signaling mechanisms and identified novel pathways impacted by estrogen in bronchial epithelial cells.

View Article and Find Full Text PDF

Rodent species, such as monogamous and biparental California mice, produce vocalizations as a means of communication. A temporal examination of vocalizations produced by California mice pups in isolation was performed. Pup recordings were performed for 3 min at ∼10.

View Article and Find Full Text PDF