Unlabelled: Establishing effective mitigation strategies to reduce the spread of influenza virus requires an improved understanding of the mechanisms of transmission. We evaluated the use of a controlled human infection model using an H3N2 seasonal influenza virus to study critical aspects of transmission, including symptom progression and the dynamics of virus shedding. Eight volunteers were challenged with influenza A/Perth/16/2009 (H3N2) virus between July and September 2022 at Emory University Hospital.
View Article and Find Full Text PDFAntibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions; identifying high-risk populations for targeted monitoring; providing early warning of the emergence and spread of antibiotic resistant bacteria and identifying novel antibiotic resistant threats.
View Article and Find Full Text PDFDespite the critical importance of virus disinfection by chlorine, our fundamental understanding of the relative susceptibility of different viruses to chlorine and robust quantitative relationships between virus disinfection rate constants and environmental parameters remains limited. We conducted a systematic review of virus inactivation by free chlorine and used the resulting data set to develop a linear mixed model that estimates chlorine inactivation rate constants for viruses based on experimental conditions. 570 data points were collected in our systematic review, representing 82 viruses over a broad range of environmental conditions.
View Article and Find Full Text PDFManual flushing of building plumbing is commonly used to address water quality issues that arise from water stagnation. Autonomous flushing informed by sensors has the potential to aid in the management of building plumbing, but a number of knowledge gaps hinder its application. This study evaluates autonomous flushing of building plumbing with online sensor and actuator nodes deployed under kitchen sinks in five residential houses.
View Article and Find Full Text PDFVirus concentrations measured in municipal wastewater help inform both the water treatment necessary to protect human health and wastewater-based epidemiology. Wastewater measurements are typically PCR-based, and interpreting gene copy concentrations requires an understanding of the form and stability of the nucleic acids. Here, we study the persistence of model virus genomes in wastewater, the protective effects provided by the virus capsids, and the relative decay rates of the genome and infectious viruses.
View Article and Find Full Text PDFWe measured concentrations of SARS-CoV-2, influenza A and B virus, respiratory syncytial virus (RSV), mpox virus, human metapneumovirus, norovirus GII, and pepper mild mottle virus nucleic acids in wastewater solids at twelve wastewater treatment plants in Central California, USA. Measurements were made daily for up to two years, depending on the wastewater treatment plant. Measurements were made using digital droplet (reverse-transcription-) polymerase chain reaction (RT-PCR) following best practices for making environmental molecular biology measurements.
View Article and Find Full Text PDFPotable water reuse technologies are used to treat wastewater to drinking water quality to help sustain a community's water resources. California has long led the adoption of potable water reuse technologies in the United States and more states are exploring these technologies as water resources decline. Reuse technologies also need to achieve adequate reductions in microbial and chemical contaminant risks to meet public health goals and secure public acceptance.
View Article and Find Full Text PDFHigh levels of viruses can be found in human excrement from infected individuals, a fraction of which can be emitted from toilet flushing. Unlike the common mix flush toilet (MFT), the urine-diverting toilet (UDT) separates urine from the toilet water. Specific focus on urine-associated viruses is needed because the UDT can emit different levels of urine-associated and fecal-borne viruses and urine has different properties compared to feces that can affect emission levels (e.
View Article and Find Full Text PDFEstimating total infection levels, including unreported and asymptomatic infections, is important for understanding community disease transmission. Wastewater can provide a pooled community sample to estimate total infections that is independent of case reporting biases toward individuals with moderate to severe symptoms and by test-seeking behavior and access. We derive three mechanistic models for estimating community infection levels from wastewater measurements based on a description of the processes that generate SARS-CoV-2 RNA signals in wastewater and accounting for the fecal strength of wastewater through endogenous microbial markers, daily flow, and per-capita wastewater generation estimates.
View Article and Find Full Text PDFFree available chlorine (FAC) is widely used to inactivate viruses by oxidizing viral components, including genomes. It is commonly assumed that hypochlorous acid (HOCl) is the chlorinating agent responsible for virus inactivation; however, recent studies have underscored that minor constituents of FAC existing in equilibrium with HOCl, such as molecular chlorine (Cl), can influence FAC reactivity toward select organic compounds. This study measures the FAC reaction kinetics with dsDNA and ssDNA extracted from representative bacteriophages (T3 and ϕX174) in samples augmented with chloride.
View Article and Find Full Text PDFBackground: The effective reproductive number, , is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths.
View Article and Find Full Text PDFViruses are important drivers of microbial community ecology and evolution, influencing microbial mortality, metabolism, and horizontal gene transfer. However, the effects of viruses remain largely unknown in many environments, including in drinking water systems. Drinking water metagenomic studies have offered a whole community perspective of bacterial impacts on water quality, but have not yet considered the influences of viruses.
View Article and Find Full Text PDFWastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Raw wastewater consists of small particles, or solids, suspended in liquid. Methods have been developed to measure SARS-CoV-2 RNA in the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in the solid fraction.
View Article and Find Full Text PDFChanges in the circulation of SARS-CoV-2 variants of concern (VOCs) may require changes in the public health response to the COVID-19 pandemic, as they have the potential to evade vaccines and pharmaceutical interventions and may be more transmissive than other SARS-CoV-2 variants. As such, it is essential to track and prevent their spread in susceptible communities. We developed digital reverse transcription (RT)-PCR assays for mutations characteristic of VOCs and used them to quantify those mutations in samples of wastewater settled solids collected from a publicly owned treatment works (POTW) during different phases of the COVID-19 pandemic.
View Article and Find Full Text PDFMonitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) is critical for public health management of coronavirus disease. Sequencing is resource-intensive and incompletely representative, and not all isolates can be sequenced. Because wastewater SARS-CoV-2 RNA concentrations correlate with coronavirus disease incidence in sewersheds, tracking VOCs through wastewater is appealing.
View Article and Find Full Text PDFFree chlorine disinfection is widely applied to inactivate viruses by reacting with their biomolecules, which include nucleic acids, proteins, and lipids. Knowing the reactivities of viral genomes with free chlorine and the protection that encapsidation provides would ultimately help predict virus susceptibility to the disinfectant. The relative reactivities of different viral genome types and the impact of viral higher order structure with free chlorine are poorly characterized.
View Article and Find Full Text PDFA number of recent retrospective studies have demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater are associated with coronavirus disease 2019 (COVID-19) cases in the corresponding sewersheds. Implementing high-resolution, prospective efforts across multiple plants depends on sensitive measurements that are representative of COVID-19 cases, scalable for high-throughput analysis, and comparable across laboratories. We conducted a prospective study across eight publicly owned treatment works (POTWs).
View Article and Find Full Text PDFSARS-CoV-2 RNA in wastewater settled solids is associated with COVID-19 incidence in sewersheds and therefore, there is a strong interest in using these measurements to augment traditional disease surveillance methods. A wastewater surveillance program should provide rapid turn around for sample measurements (ideally within 24 hours), but storage of samples is necessary for a variety of reasons including biobanking. Here we investigate how storage of wastewater solids at 4 °C, -20 °C, and -80 °C affects measured concentrations of SARS-CoV-2 RNA.
View Article and Find Full Text PDFReal-time quantitative polymerase chain reaction (qPCR) and digital PCR (dPCR) methods have revolutionized environmental microbiology, yielding quantitative organism-specific data of nucleic acid targets in the environment. Such data are essential for characterizing interactions and processes of microbial communities, assessing microbial contaminants in the environment (water, air, fomites), and developing interventions (water treatment, surface disinfection, air purification) to curb infectious disease transmission. However, our review of recent qPCR and dPCR literature in our field of health-related environmental microbiology showed that many researchers are not reporting necessary and sufficient controls and methods, which would serve to strengthen their study results and conclusions.
View Article and Find Full Text PDFHuman norovirus (hNoV) is an important etiology of gastrointestinal illness and can be transmitted via ingestion of contaminated water. Currently impractical to culture, hNoV detection is reliant on real-time polymerase chain reaction (RT-PCR)-based methods. This approach cannot distinguish between infective and inactivated viruses because intact regions of the RNA genome can amplify even if the damage is present in other regions of the genome or because intact genetic material is not contained within an infectious virion.
View Article and Find Full Text PDF